Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LIU Songsong, SUN Kangwen. Modeling and analysis of stratospheric airship's energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519(in Chinese)
Citation: LIU Songsong, SUN Kangwen. Modeling and analysis of stratospheric airship's energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519(in Chinese)

Modeling and analysis of stratospheric airship's energy storage battery considering rate

doi: 10.13700/j.bh.1001-5965.2020.0519
Funds:

National Natural Science Foundation of China 51775021

the Fundamental Research Funds for the Central Universities YWF-18-BH-Y-165

More Information
  • Corresponding author: SUN Kangwen, E-mail: sunkw100@buaa.edu.cn
  • Received Date: 14 Sep 2020
  • Accepted Date: 06 Dec 2020
  • Publish Date: 20 Jan 2022
  • Accurately grasping the actual power of energy storage battery is one of the key factors for the stratospheric airship to realize long-time flight. First, a simulation model of a stratospheric airship energy system was established to analyze the energy input and consumption dynamically. Then, charging and discharging tests of energy storage batteries with different electric current ratios were carried out. The polynomial fitting method was adopted to establish an analysis model of state of charge (SOC), remaining discharging time (RDT) and remaining charging time (RCT) in the process of charging and discharging of energy storage batteries. Finally, the flight simulation was carried out by combining the energy input and consumption models of the energy system and the battery model to obtain the variation data of each part. And the quantitative comparison and analysis with the existing experimental data were conducted. The results show that the calculated errors of the established energy storage battery model in SOC, RDT and RCT are less than 3%, 1.5% and 1.5% respectively, which can accurately reflect the changes of SOC, RDT and RCT during the battery working process, and can provide quantitative support for the formulation of optimal flight strategies for the stratospheric airship platform.

     

  • loading
  • [1]
    张泰华, 姜鲁华, 周江华. 放飞过程中平流层飞艇运动与受力分析[J]. 北京航空航天大学学报, 2018, 44(4): 691-699. doi: 10.13700/j.bh.1001-5965.2017.0227

    ZHANG T H, JIANG L H, ZHOU J H. Kinematic and mechanical analysis on launch process of stratospheric airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 691-699(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0227
    [2]
    ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. doi: 10.1016/j.rser.2016.01.053
    [3]
    OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7): 1352-1377. doi: 10.1002/rob.21717
    [4]
    张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2016S1001.htm

    ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2016S1001.htm
    [5]
    梁高铭. 平流层飞艇能源管理系统建模与验证[D]. 北京: 北京航空航天大学, 2012: 67-80.

    LIANG G M. Modeling and verification of the energy management system for stratospheric airship[D]. Beijing: Beihang University, 2012: 67-80(in Chinese).
    [6]
    SHAN C, LV M, SUN K W, et al. Analysis of energy system configuration and energy balance for stratospheric airship based on position energy storage strategy[J]. Aerospace Science and Technology, 2020, 101: 105844. doi: 10.1016/j.ast.2020.105844
    [7]
    ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002
    [8]
    DAI H F, WEI X Z, SUN Z C, et al. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications[J]. Applied Energy, 2012, 95: 227-237. doi: 10.1016/j.apenergy.2012.02.044
    [9]
    OUYANG M G, LIU G M, LU L G, et al. Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources, 2014, 270: 221-237. doi: 10.1016/j.jpowsour.2014.07.090
    [10]
    ZHANG Y, SHANG Y L, CUI N X, et al. Parameters identification and sensitive characteristics analysis for lithium-ion batteries of electric vehicles[J]. Energies, 2017, 11(1): 19. doi: 10.3390/en11010019
    [11]
    YU J S, YANG J, TANG D Y, et al. Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2018, 21(1): 81-89. doi: 10.17531/ein.2019.1.10
    [12]
    YU J S, LIANG S, TANG D Y, et al. Remaining discharge time prognostics of lithium-ion batteries using dirichlet process mixture model and particle filtering method[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(9): 2317-2328. doi: 10.1109/TIM.2017.2708204
    [13]
    DONG G Z, WEI J W, CHEN Z H, et al. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2017, 364: 316-327. doi: 10.1016/j.jpowsour.2017.08.040
    [14]
    程树英, 林鹏程, 林培杰. 一种新型锂电池充电剩余时间预测方法[J]. 电源技术, 2019, 43(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201901031.htm

    CHENG S Y, LIN P C, LIN P J. New method of predict remaining charging time for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1): 99-102(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201901031.htm
    [15]
    MUELLER J, ZHAO Y Y, GARRARD W. Sensitivity and solar power analysis of optimal trajectories for autonomous airships[C]//AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 2009.
    [16]
    FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//AIAA 5th ATIO and 16th Lighter-than-Air Sys Tech and Balloon Systems Conferences. Reston: AIAA, 2005.
    [17]
    WU J F, WANG H L, HUANG Y, et al. Solar-powered aircraft endurance map[J]. Journal of Guidance, Control and Dynamics, 2019, 42(3): 687-694. doi: 10.2514/1.G003704
    [18]
    徐颖, 沈英. 基于改进卡尔曼滤波的电池SOC估算[J]. 北京航空航天大学学报, 2014, 40(6): 855-860. doi: 10.13700/j.bh.1001-5965.2013.0414

    XU Y, SHEN Y. Improved battery state-of-charge estimation based on Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 855-860(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0414
    [19]
    LV M, LI J, DU H F, et al. Solar array layout optimization for stratospheric airships using numerical method[J]. Energy Conversion and Management, 2017, 135: 160-169. doi: 10.1016/j.enconman.2016.12.080
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(10)

    Article Metrics

    Article views(279) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return