Citation: | LIU Rui, BAI Junqiang, QIU Yasong, et al. Steady blowing control at wing-engine junction of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 132-146. doi: 10.13700/j.bh.1001-5965.2020.0521(in Chinese) |
For airliner with a wing-mounted engine layout, in order to ensure ground clearance, the pylon has to be short, which leads to a slat cutout, and the nacelle wake of the engine generates low energy flow and even flow separation on the upper wing surface. Numerical simulation method has been used to systematically study active flow control technology at wing-engine junction of airliner to improve the aerodynamic performance of the landing configuration. The influence of the blowing parameters on blowing performance was studied using the wing-nacelle configuration. The results show that, at high angles of attack, blowing can suppress the separation of the upper surface of the wing behind the nacelle, and the maximum lift coefficient can be significantly improved. Since the width of the blowing slot and the blowing mass flow rate influence the total pressure of blowing air, they show great effects on the blowing performance with the improvement of the lift coefficient of more than 0.05. The angle between the blowing slot and the upper wing surface affects the area of blowing energy, making a considerable effect on the blowing performance. The position of blowing slot affects the control range of the blowing air, which also has some effects on the blowing performance. Finally, the full-body configuration with and without nacelle vortex fins were studied respectively. For the configuration without nacelle vortex fin, the lift coefficient of the linear segment increases by about 0.15, the maximum lift coefficient increases by 0.186, and stall angle of attack increases by 1°. For the configuration with nacelle vortex fin, the lift coefficient of the linear segment increases by about 0.13, and the maximum lift coefficient increases by 0.16.
[1] |
王志栋. 翼吊发动机对机翼设计的影响分析[J]. 民用飞机设计与研究, 1997(2): 19-22.
WANG Z D. Analysis about influence of wing-mounted engine nacelle on wing design[J]. Civil Aircraft Design and Research, 1997(2): 19-22(in Chinese).
|
[2] |
BABIĆ R Š, TATALOVIĆ M, BAJIĆ J. Air transport competition challenges[J]. International Journal for Traffic and Transport Engineering (IJTTE), 2017, 7(2): 144-163.
|
[3] |
JOHN A. Improving jet engine aerodynamic design via novel component shaping and analysis[D]. Sheffield: University of Sheffield, 2018.
|
[4] |
LANGE F B. Aerodynamic optimization of an UHBR engine position on a representative short range aircraft configuration at cruise flight conditions[C]//2018 Applied Aerodynamics Conference. Reston: AIAA, 2018: 3811.
|
[5] |
SCHLOESSER P, SOUDAKOV V, BAUER M, et al. Active separation control at the pylon-wing junction of a real-scale model[J]. AIAA Journal, 2019, 57(1): 132-141. doi: 10.2514/1.J057345
|
[6] |
邱亚松, 白俊强, 黄琳, 等. 翼吊发动机短舱对三维增升装置的影响及改善措施研究[J]. 空气动力学学报, 2012, 30(1): 7-13. doi: 10.3969/j.issn.0258-1825.2012.01.002
QIU Y S, BAI J Q, HUANG L, et al. Study about influence of wing-mounted engine nacelle on high-lift system and improvement measures[J]. Acta Aerodynamica Sinica, 2012, 30(1): 7-13(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.002
|
[7] |
白俊强, 刘南, 邱亚松, 等. 民用运输机短舱涡流片设计研究[J]. 空气动力学学报, 2014, 32(2): 190-196.
BAI J Q, LIU N, QIU Y S, et al. The design of nacelle chine in large civil transport aircraft[J]. Acta Aerodynamica Sinica, 2014, 32(2): 190-196(in Chinese).
|
[8] |
白俊强, 刘南, 邱亚松, 等. 大型民用运输机短舱涡流片增升效率以及参数影响研究[J]. 西北工业大学学报, 2013, 31(4): 8.
BAI J Q, LIU N, QIU Y S, et al. Investigation on influence of nacelle chine of large civil transport aircraft on high-lift efficiency and on influence of relevant parameters[J]. Journal of Northwestern Polytechnical University, 2013, 31(4): 8(in Chinese).
|
[9] |
SAVONI L, RUDNIK R. Pylon design for a short range transport aircraft with over-the-wing mounted UHBR engines[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 11.
|
[10] |
PACK MELTON L G, KOKLU M, ANDINO M Y, et al. Active flow control for trailing edge flap separation[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 1799.
|
[11] |
WIERACH P, PETERSEN J, SINAPIUS M. Design and experimental characterization of an actuation system for flow control of an internally blown coanda flap[J]. Aerospace, 2020, 7(3): 29. doi: 10.3390/aerospace7030029
|
[12] |
LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4): 1539-1551. doi: 10.2514/1.C034270
|
[13] |
BECK N, RADESPIEL R, LENFERS C, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control by internally blown flaps[C]//2014 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2014: 407.
|
[14] |
TAVERNETTI L. The C-17-modern airlift technology[C]//Aerospace Design Conference. Reston: AIAA, 1992: 1262.
|
[15] |
ANDINO M Y, LIN J C, ROMAN S, et al. Active flow control on vertical tail models[J]. AIAA Journal, 2019, 57(8): 3322-3338. doi: 10.2514/1.J057876
|
[16] |
FRICKE S, CIOBACA V, WILD J, et al. Numerical studies of active flow control applied at the engine-wing junction[C]//Symposium on Field of the Research Unit 1066. Berlin: Springer, 2014: 397-411.
|
[17] |
张扬. 一种适用于飞行器外流场模拟的新型湍流模型[D]. 西安: 西北工业大学, 2014.
ZHANG Y. A new turbulence model for external flow simulation of aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese).
|
[18] |
MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 101-109.
|
[19] |
RADESPIEL R, BURNAZZI M, CASPER M, et al. Active flow control for high lift with steady blowing[J]. The Aeronautical Journal, 2016, 120(1223): 171-200. doi: 10.1017/aer.2015.7
|
[20] |
邱亚松, 白俊强, 李亚林, 等. 复杂几何细节对增升装置气动性能影响研究[J]. 航空学报, 2012, 33(3): 421-429.
QIU Y S, BAI J Q, LI Y L, et al. Study on influence of complex geometry details on the aerodynamic performance of high-lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 421-429(in Chinese).
|
[21] |
ENGLAR R J, JONES G S, ALLAN B G, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 902.
|
[1] | LI F,LI Z H,CHEN A G. Boltzmann-Rykov model equation gas-kinetic unified algorithm and nozzle flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):553-562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0054. |
[2] | LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0870. |
[3] | TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0461. |
[4] | ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma∞、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758 |
[5] | SHI Tong, HE Yunqin, LIANG Guozhu, PAN Hui, ZHU Pingping. Theoretic model of flow resistance for gas-filled accumulators in liquid rockets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0748 |
[6] | FENG X R,GAO Z D,WANG J,et al. Research on aircraft landing scheduling problem based on compact subsequence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2421-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0656. |
[7] | ZHANG Hua-bo, GUO Ying-qing, LI Gui-cai, ZHAO Wan-li, YE Peng. Modeling and parameter design methodology for component-level performance model of ducted ram air generation turbine[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0787 |
[8] | WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857. |
[9] | CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627. |
[10] | XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0635. |
[11] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[12] | HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335. |
[13] | HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223. |
[14] | YAN Y F,GAN X S,WU Y R,et al. Aircraft landing safety quality analysis based on modified FRAM method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1964-1973 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0574. |
[15] | ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609. |
[16] | FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0353. |
[17] | ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790. |
[18] | CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032. |
[19] | FANG Yifang, XIANG Gaoxiang, TANG Chun'e, SHI Yuejuan. Numerical simulation on internal flow performances of multi-stage pressure drop valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070 |
[20] | YANG Lijun, HUANG Dongqi, HAN Wang, LI Jingxuan, FU Qingfei. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608 |
1. | 景凤,郭婧娟. 基于BIM的高铁工程量清单EBS\WBS研究. 铁道标准设计. 2020(02): 68-74 . ![]() | |
2. | 周泽鑫,孙志强,徐冰,洪扬. 空间光学遥感器真空热试验工装模块化设计. 北京航空航天大学学报. 2019(08): 1544-1551 . ![]() | |
3. | 张秋雁,张俊玮,丛中笑,宋锡强,曾招辉,王忠义. 符合智能制造硬件要求的积木式单相智能电能表设计研究. 自动化与仪器仪表. 2018(06): 37-40 . ![]() | |
4. | 田启华,梅月媛,杜义贤,周祥曼. 基于聚类分析的大容量耦合设计任务规划的研究. 中国机械工程. 2018(05): 544-551 . ![]() | |
5. | 刘航,何铭鑫,聂仕麟. 基于模块化技术的复杂产品融合设计方案研究——以斯特林发动机为例. 管理工程师. 2017(06): 28-31 . ![]() |