Dong Lei, Ren Zhang, Li Qingdonget al. Fault prediction for aircraft control surface damage based on SMO-SVR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1300-1305. (in Chinese)
Citation: WANG Pengfei, HE Xiaofan, ZHANG Han, et al. Correlation between accelerated aging of coating and natural exposure test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 27-35. doi: 10.13700/j.bh.1001-5965.2020.0525(in Chinese)

Correlation between accelerated aging of coating and natural exposure test

doi: 10.13700/j.bh.1001-5965.2020.0525
More Information
  • Corresponding author: HE Xiaofan, E-mail: xfhe@buaa.edu.cn
  • Received Date: 16 Sep 2020
  • Accepted Date: 06 Dec 2020
  • Publish Date: 20 Jan 2022
  • In order to study the correlation between accelerated aging test and natural exposure test, a comparative test between the exposure test and accelerated test on typical 7B04 T74 aluminum alloy-30CrMnSiA steel-7B04 T74 aluminum alloy connectors with double row 8 steel screws was carried out. The specimens were accelerated in the protective coating accelerated aging environment for 6 cycles and the natural exposure test of Wanning, Hainan for 2 years, respectively. The aging features including loss of gloss, fading, chalking, bubbling, cracking, flaking and metal substrate corrosion of protective coating were observed and measured, the aging characteristics and matrix corrosion products of accelerated aging and natural exposure protective coatings were compared and analyzed, the comparison on the tested aging characteristics of protective coatings indicates that the accelerated aging test can make the characteristics of the field aging reappear. Considering the multi-attribute and dynamic characteristics of aging characteristics of protective coatings, the aging damage in two environments is comprehensively evaluated quantitatively, and the variation law of aging characteristics with time is described by exponential function. By comparing the aging kinetics, the equation of the equivalent acceleration factor was given. The equivalent acceleration relation between two environments was obtained as 0.4 year/cycle.

     

  • [1]
    LINCOLN J W. Corrosion and fatigue: Safety issue or economic issue[C]//RTO AVT Workshop on "Fatigue in Presence of Corrosion", 1998: 1-3.
    [2]
    RUSSOS S, SHARP P K, DHAMARI R, et al. The influence of the environment and corrosion on the structural integrity of aircraft materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(6): 464-472. doi: 10.1111/j.1460-2695.2009.01348.x/pdf
    [3]
    U.S. Department of Defense. Aircraft structural integrity program(ASIP): MIL-STD-1530D[S]. Wshington, D.C. : U.S. Department of Defense, 2016.
    [4]
    陈群志, 鞠明, 余文波, 等. 严酷环境下飞机外场腐蚀防护对策与措施[J]. 装备环境工程, 2017, 14(3): 1-7.

    CHEN Q Z, JU M, YU W B, et al. Countermeasures for aircraft field corrosion protection under the severe environment condition[J]. Equipment Environmental Engineering, 2017, 14(3): 1-7(in Chinese).
    [5]
    CRAGNOLINO G, SRIDHAR N. Application of accelerated corrosion tests to service life prediction of materials: ASTM STP 1194[S]. West Conshohocken: ASTM, 1992.
    [6]
    MARCEAUX S, MARTIN C, MARGAILLAN A, et al. Effects of accelerated ageing conditions on the mechanism of chemically active antifouling coatings[J]. Progress in Organic Coatings, 2018, 125: 257-265. doi: 10.1016/j.porgcoat.2018.09.004
    [7]
    CAI G Y, WANG H W, JIANG D, et al. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: Corrosion resistance and morphology[J]. Progress in Organic Coatings, 2018, 123: 337-349. doi: 10.1016/j.porgcoat.2018.07.025
    [8]
    MIWA T, TAKESHITA Y, ISHII A, et al. Simulation of water absorption and desorption behavior for anti-corrosion coatings in existing and new accelerated corrosion tests[J]. Progress in Organic Coatings, 2018, 120: 71-78. doi: 10.1016/j.porgcoat.2018.02.031
    [9]
    刘文珽, 李玉海, 陈群志, 等. 飞机结构腐蚀部位涂层加速试验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1): 109-122. doi: 10.3969/j.issn.1001-5965.2002.01.028

    LIU W T, LI Y H, CHEN Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1): 109-122(in Chinese). doi: 10.3969/j.issn.1001-5965.2002.01.028
    [10]
    刘文珽, 李玉海. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004.

    LIU W T, LI Y H. Aircraft structure calendar life system assessment technology[M]. Beijing: Aviation Industrial Press, 2004(in Chinese).
    [11]
    张栋. 飞机结构件在当量环境谱下加速老化试验和日历寿命估算方法[J]. 航空学报, 2000, 21(3): 196-201. doi: 10.3321/j.issn:1000-6893.2000.03.002

    ZHANG D. Accelerated corrosion test of the aircraft structure under equivalent environment spectrum and the computing method for the calendar life[J]. Acta Aeronautica et Astronautics Sinica, 2000, 21(3): 196-201(in Chinese). doi: 10.3321/j.issn:1000-6893.2000.03.002
    [12]
    李玉海, 刘文珽, 杨旭, 等. 军用飞机结构日历寿命体系评定应用范例[M]. 北京: 航空工业出版社, 2005.

    LI Y H, LIU W T, YANG X, et al. Application example of military aircraft structure calendar life system assessment[M]. Beijing: Aviation Industrial Press, 2005(in Chinese).
    [13]
    陈跃良, 段成美, 金平, 等. 飞机结构局部环境谱及加速老化当量谱[J]. 航空工程与维修, 1999, 31(3): 19-20. doi: 10.3969/j.issn.1672-0989.1999.03.007

    CHEN Y L, DUAN C M, JIN P, et al. Local environmental and accelerating corrosion equivalent spectrums of aircraft structure[J]. Aviation Maintenance & Engineering, 1999, 31(3): 19-20(in Chinese). doi: 10.3969/j.issn.1672-0989.1999.03.007
    [14]
    ASTM. Standard test method for evaluation of painted or coated specimens subjected to corrosive environments: ASTM D1654-08[S]. West Conshohocken: ASTM, 2008.
    [15]
    曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005.

    CAO C N. Natural environmental corrosion on Chinese materials[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
    [16]
    张勇, 丁文勇, 陈跃良, 等. 有机涂层户外曝晒与加速试验对比研究[J]. 装备环境工程, 2013, 10(2): 14-17.

    ZHANG Y, DING W Y, CHEN Y L, et al. Comparison study on outdoor exposure and accelerated tests of organic coatings[J]. Equipment Environmental Engineering, 2013, 10(2): 14-17(in Chinese).
    [17]
    王鹏, 金平, 谭晓明, 等. 基于失光率的飞机涂层自然曝晒与室内加速老化试验当量加速关系[J]. 航空材料学报, 2015, 35(6): 77-82.

    WANG P, JIN P, TAN X M, et al. Accelerated equivalent relationship between natural exposure and accelerated experiments of aircraft coating based on gloss loss[J]. Journal of Aeronautical Materials, 2015, 35(6): 77-82(in Chinese).
    [18]
    AMIRUDIN A, THIERRY D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J]. Progress in Organic Coatings, 1995, 26(1): 1-28. doi: 10.1016/0300-9440(95)00581-1
    [19]
    JOSEPH R X, TOSHIYASU N. Evaluation of the corrosion protection performance of epoxy coatings containing Mg nanoparticle on carbon steel in 0.1M NaCl solution by SECM and EIS techniques[J]. Journal of Coatings Technology and Research, 2017, 14(2): 395-406. doi: 10.1007/s11998-016-9856-7
    [20]
    刘倞, 胡吉明, 张鉴清, 等. 基于高频电化学阻抗谱测试的涂层防护性能评价方法[J]. 腐蚀科学与防护技术, 2010, 22(4): 325-328.

    LIU L, HU J M, ZHANG J Q, et al. Evaluation of protectiveness of organic coatings by means of high-frequency EIS measurement[J]. Corrosion Science and Protection Technology, 2010, 22(4): 325-328(in Chinese).
    [21]
    SOUTO R M, LLORENTE M L, FERNANEZ L, et al. Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarization[J]. Progress in Organic Coatings, 2005, 53(1): 71-76. doi: 10.1016/j.porgcoat.2005.01.009
    [22]
    谭晓明, 王鹏, 王德, 等. 基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J]. 装备环境工程, 2017, 14(1): 5-8.

    TAN X M, WANG P, WANG D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J]. Equipment Environmental Engineering, 2017, 14(1): 5-8(in Chinese).
    [23]
    吕耀辉, 刘玉欣, 何东昱, 等. 电化学阻抗技术在金属腐蚀及涂层防护中的研究进展[J]. 电镀与精饰, 2018, 40(6): 22-28. doi: 10.3969/j.issn.1001-3849.2018.06.006

    LV Y H, LIU Y X, HE D Y, et al. Development on electrochemical impedance spectroscopy technology in metal corrosion and coating anticorrosion[J]. Plating and Finishing, 2018, 40(6): 22-28(in Chinese). doi: 10.3969/j.issn.1001-3849.2018.06.006
    [24]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆涂层老化的评级方法: GB/T 1766—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Paints and varnishes—Rating schemes of degradation of coats: GB/T 1766—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [25]
    ISO. Paints and varnishes-Evalution of degradation of coatings-Designation of quantity and size of defects, and of intensity of uniform changes in appreances-Part 6: Assessment of degree of chalking by tape method: ISO 4628-6[S]. Geneve: ISO, 2003.
    [26]
    唐扬刚, 贺小帆, 刘文珽, 等. 飞机连接结构防护涂层老化损伤量化评估方法[J]. 航空学报, 2017, 38(1): 141-153.

    TANG Y G, HE X F, LIU W T, et al. Quantitative method for evaluating aging damage of protective coating of aircraft joints structures[J]. Acta Aeronautica et Astronautics Sinica, 2017, 38(1): 141-153(in Chinese).
  • Relative Articles

    [1]ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0761.
    [2]HONG Xuebao, LI Jie, XING Jin, YANG Pengyu, YANG Dongkai. Experimental study on interferometric altimetry using a ground-based dualantenna cGNSS-R system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0742
    [3]YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219.
    [4]TIAN Gui-shuang, WANG Shao-ping, SHI Jian. Reliability model and lifetime prediction for train traction system considering multiple dependent components[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0797
    [6]HU Jing, GUO Dezhou, GENG Hai, YANG Fuquan, LI Jianpeng, CHEN Juanjuan. Experimental study on the effect of the aperture of the accelerator grid on the performance of variable thrust ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0180
    [7]LI X Q,ZHANG H G,WANG S,et al. Development and experimental of friction tester for aluminum alloy sheet stamping[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1898-1910 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0542.
    [8]CAI Qingzhu, LIU Qiang. An efficient Swin Transformer accelerator design[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0222
    [9]ZHONG L L,ZHANG Z X,CHEN Y G. Engineering test method for avionics system based on conformity evidence chain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1500-1511 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0643.
    [10]ZHONG J,LUO C,ZHANG H,et al. Flight data anomaly detection based on correlation parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1738-1745 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0574.
    [11]YUAN Jia-hui, CHEN Shui-fu, XIA Yu-chao, LIU Yi. Spatial correlation of along-wind fluctuating wind loads on rectangular high-rise buildings[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0828
    [12]LI He, CAI Liangxu, ZHONG Yong, ZHANG Jianjun, HAO Yujun, XUE Nan. Aircraft platform comprehensive environmental prediction and accelerated test spectrum compilation in parking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0633
    [13]HE F D,WU B,LI Z R. Zone loading technology for aircraft load calibration test[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2867-2872 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0742.
    [14]LIU S,YANG D Z,FENG Q,et al. Modeling method of flight test requirements based on DoDAF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2129-2136 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0584.
    [15]TANG G H,WANG N D,LIU S T,et al. Experimental study on influence of filter mesh size on radial permeability of sand[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1516-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0451.
    [16]LI Q,WANG Y K,JIA Y H. Test study on wing rock in Herbst maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1083-1098 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0375.
    [17]LIU Qiang, YIN Yu, LI Kai. Research on image preprocessing acceleration method based on RISC-V vector extension[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0208
    [18]LIU Q,LIU W Z,YU B,et al. An IMU state optimization accelerator for SLAM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1027-1035 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0382.
    [19]TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0450.
    [20]SUN Zhimei, WANG Guanjie, ZHANG Xuanguang, ZHOU Jian. Novel material design and development accelerated by materials genome engineering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1575-1588. doi: 10.13700/j.bh.1001-5965.2022.0318
  • Cited by

    Periodical cited type(4)

    1. 刘熊伟,蒋婉娟,张志宏,葛鹏莉,申成袆,魏晓静,董泽华. 耐蚀涂层失效监测方法及失效机制研究进展. 腐蚀与防护. 2024(07): 50-60 .
    2. 杨梅影,舒勇,李伟光,潘吉林,肖盼. 通信铁塔腐蚀控制管理探讨. 现代传输. 2023(02): 57-60 .
    3. 黄有旺,孙晓玲,杨文锦,陈慧. 典型超强耐热镁合金部件服役环境寿命仿真分析. 材料保护. 2023(12): 7-11+18 .
    4. 苏航,杨树文,洪卫丽,虎小强,李玉清. 彩钢板涂层加速老化与自然曝晒试验的当量加速关系研究. 电镀与涂饰. 2022(22): 1586-1594 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(389) PDF downloads(50) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return