Citation: | WANG Pengfei, HE Xiaofan, ZHANG Han, et al. Correlation between accelerated aging of coating and natural exposure test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 27-35. doi: 10.13700/j.bh.1001-5965.2020.0525(in Chinese) |
In order to study the correlation between accelerated aging test and natural exposure test, a comparative test between the exposure test and accelerated test on typical 7B04 T74 aluminum alloy-30CrMnSiA steel-7B04 T74 aluminum alloy connectors with double row 8 steel screws was carried out. The specimens were accelerated in the protective coating accelerated aging environment for 6 cycles and the natural exposure test of Wanning, Hainan for 2 years, respectively. The aging features including loss of gloss, fading, chalking, bubbling, cracking, flaking and metal substrate corrosion of protective coating were observed and measured, the aging characteristics and matrix corrosion products of accelerated aging and natural exposure protective coatings were compared and analyzed, the comparison on the tested aging characteristics of protective coatings indicates that the accelerated aging test can make the characteristics of the field aging reappear. Considering the multi-attribute and dynamic characteristics of aging characteristics of protective coatings, the aging damage in two environments is comprehensively evaluated quantitatively, and the variation law of aging characteristics with time is described by exponential function. By comparing the aging kinetics, the equation of the equivalent acceleration factor was given. The equivalent acceleration relation between two environments was obtained as 0.4 year/cycle.
[1] |
LINCOLN J W. Corrosion and fatigue: Safety issue or economic issue[C]//RTO AVT Workshop on "Fatigue in Presence of Corrosion", 1998: 1-3.
|
[2] |
RUSSOS S, SHARP P K, DHAMARI R, et al. The influence of the environment and corrosion on the structural integrity of aircraft materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(6): 464-472. doi: 10.1111/j.1460-2695.2009.01348.x/pdf
|
[3] |
U.S. Department of Defense. Aircraft structural integrity program(ASIP): MIL-STD-1530D[S]. Wshington, D.C. : U.S. Department of Defense, 2016.
|
[4] |
陈群志, 鞠明, 余文波, 等. 严酷环境下飞机外场腐蚀防护对策与措施[J]. 装备环境工程, 2017, 14(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703004.htm
CHEN Q Z, JU M, YU W B, et al. Countermeasures for aircraft field corrosion protection under the severe environment condition[J]. Equipment Environmental Engineering, 2017, 14(3): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703004.htm
|
[5] |
CRAGNOLINO G, SRIDHAR N. Application of accelerated corrosion tests to service life prediction of materials: ASTM STP 1194[S]. West Conshohocken: ASTM, 1992.
|
[6] |
MARCEAUX S, MARTIN C, MARGAILLAN A, et al. Effects of accelerated ageing conditions on the mechanism of chemically active antifouling coatings[J]. Progress in Organic Coatings, 2018, 125: 257-265. doi: 10.1016/j.porgcoat.2018.09.004
|
[7] |
CAI G Y, WANG H W, JIANG D, et al. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: Corrosion resistance and morphology[J]. Progress in Organic Coatings, 2018, 123: 337-349. doi: 10.1016/j.porgcoat.2018.07.025
|
[8] |
MIWA T, TAKESHITA Y, ISHII A, et al. Simulation of water absorption and desorption behavior for anti-corrosion coatings in existing and new accelerated corrosion tests[J]. Progress in Organic Coatings, 2018, 120: 71-78. doi: 10.1016/j.porgcoat.2018.02.031
|
[9] |
刘文珽, 李玉海, 陈群志, 等. 飞机结构腐蚀部位涂层加速试验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1): 109-122. doi: 10.3969/j.issn.1001-5965.2002.01.028
LIU W T, LI Y H, CHEN Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1): 109-122(in Chinese). doi: 10.3969/j.issn.1001-5965.2002.01.028
|
[10] |
刘文珽, 李玉海. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004.
LIU W T, LI Y H. Aircraft structure calendar life system assessment technology[M]. Beijing: Aviation Industrial Press, 2004(in Chinese).
|
[11] |
张栋. 飞机结构件在当量环境谱下加速老化试验和日历寿命估算方法[J]. 航空学报, 2000, 21(3): 196-201. doi: 10.3321/j.issn:1000-6893.2000.03.002
ZHANG D. Accelerated corrosion test of the aircraft structure under equivalent environment spectrum and the computing method for the calendar life[J]. Acta Aeronautica et Astronautics Sinica, 2000, 21(3): 196-201(in Chinese). doi: 10.3321/j.issn:1000-6893.2000.03.002
|
[12] |
李玉海, 刘文珽, 杨旭, 等. 军用飞机结构日历寿命体系评定应用范例[M]. 北京: 航空工业出版社, 2005.
LI Y H, LIU W T, YANG X, et al. Application example of military aircraft structure calendar life system assessment[M]. Beijing: Aviation Industrial Press, 2005(in Chinese).
|
[13] |
陈跃良, 段成美, 金平, 等. 飞机结构局部环境谱及加速老化当量谱[J]. 航空工程与维修, 1999, 31(3): 19-20. doi: 10.3969/j.issn.1672-0989.1999.03.007
CHEN Y L, DUAN C M, JIN P, et al. Local environmental and accelerating corrosion equivalent spectrums of aircraft structure[J]. Aviation Maintenance & Engineering, 1999, 31(3): 19-20(in Chinese). doi: 10.3969/j.issn.1672-0989.1999.03.007
|
[14] |
ASTM. Standard test method for evaluation of painted or coated specimens subjected to corrosive environments: ASTM D1654-08[S]. West Conshohocken: ASTM, 2008.
|
[15] |
曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005.
CAO C N. Natural environmental corrosion on Chinese materials[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
|
[16] |
张勇, 丁文勇, 陈跃良, 等. 有机涂层户外曝晒与加速试验对比研究[J]. 装备环境工程, 2013, 10(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201302003.htm
ZHANG Y, DING W Y, CHEN Y L, et al. Comparison study on outdoor exposure and accelerated tests of organic coatings[J]. Equipment Environmental Engineering, 2013, 10(2): 14-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201302003.htm
|
[17] |
王鹏, 金平, 谭晓明, 等. 基于失光率的飞机涂层自然曝晒与室内加速老化试验当量加速关系[J]. 航空材料学报, 2015, 35(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506013.htm
WANG P, JIN P, TAN X M, et al. Accelerated equivalent relationship between natural exposure and accelerated experiments of aircraft coating based on gloss loss[J]. Journal of Aeronautical Materials, 2015, 35(6): 77-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506013.htm
|
[18] |
AMIRUDIN A, THIERRY D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J]. Progress in Organic Coatings, 1995, 26(1): 1-28. doi: 10.1016/0300-9440(95)00581-1
|
[19] |
JOSEPH R X, TOSHIYASU N. Evaluation of the corrosion protection performance of epoxy coatings containing Mg nanoparticle on carbon steel in 0.1M NaCl solution by SECM and EIS techniques[J]. Journal of Coatings Technology and Research, 2017, 14(2): 395-406. doi: 10.1007/s11998-016-9856-7
|
[20] |
刘倞, 胡吉明, 张鉴清, 等. 基于高频电化学阻抗谱测试的涂层防护性能评价方法[J]. 腐蚀科学与防护技术, 2010, 22(4): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201004015.htm
LIU L, HU J M, ZHANG J Q, et al. Evaluation of protectiveness of organic coatings by means of high-frequency EIS measurement[J]. Corrosion Science and Protection Technology, 2010, 22(4): 325-328(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201004015.htm
|
[21] |
SOUTO R M, LLORENTE M L, FERNANEZ L, et al. Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarization[J]. Progress in Organic Coatings, 2005, 53(1): 71-76. doi: 10.1016/j.porgcoat.2005.01.009
|
[22] |
谭晓明, 王鹏, 王德, 等. 基于电化学阻抗的航空有机涂层加速老化动力学规律研究[J]. 装备环境工程, 2017, 14(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201701002.htm
TAN X M, WANG P, WANG D, et al. Accelerated aging dynamic rules of aeronautic organic coating based on electrochemical impedance[J]. Equipment Environmental Engineering, 2017, 14(1): 5-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201701002.htm
|
[23] |
吕耀辉, 刘玉欣, 何东昱, 等. 电化学阻抗技术在金属腐蚀及涂层防护中的研究进展[J]. 电镀与精饰, 2018, 40(6): 22-28. doi: 10.3969/j.issn.1001-3849.2018.06.006
LV Y H, LIU Y X, HE D Y, et al. Development on electrochemical impedance spectroscopy technology in metal corrosion and coating anticorrosion[J]. Plating and Finishing, 2018, 40(6): 22-28(in Chinese). doi: 10.3969/j.issn.1001-3849.2018.06.006
|
[24] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆涂层老化的评级方法: GB/T 1766—2008[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Paints and varnishes—Rating schemes of degradation of coats: GB/T 1766—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
|
[25] |
ISO. Paints and varnishes-Evalution of degradation of coatings-Designation of quantity and size of defects, and of intensity of uniform changes in appreances-Part 6: Assessment of degree of chalking by tape method: ISO 4628-6[S]. Geneve: ISO, 2003.
|
[26] |
唐扬刚, 贺小帆, 刘文珽, 等. 飞机连接结构防护涂层老化损伤量化评估方法[J]. 航空学报, 2017, 38(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701013.htm
TANG Y G, HE X F, LIU W T, et al. Quantitative method for evaluating aging damage of protective coating of aircraft joints structures[J]. Acta Aeronautica et Astronautics Sinica, 2017, 38(1): 141-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701013.htm
|