Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Ershen, SONG Yuanshang, TONG Gang, et al. Improved conflict detection model of low-altitude flight based on support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 8-14. doi: 10.13700/j.bh.1001-5965.2020.0533(in Chinese)
Citation: WANG Ershen, SONG Yuanshang, TONG Gang, et al. Improved conflict detection model of low-altitude flight based on support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 8-14. doi: 10.13700/j.bh.1001-5965.2020.0533(in Chinese)

Improved conflict detection model of low-altitude flight based on support vector machine

doi: 10.13700/j.bh.1001-5965.2020.0533
Funds:

National Natural Science Foundation of China 62173237

National Natural Science Foundation of China 61571309

Key R & D Projects of Liaoning Province 2020JH2/10100045

Natural Science Foundation of Liaoning Province 2019-MS-251

Talent Project of Revitalization Liaoning XLYC1907022

High-Level Innovation Talent Project of Shenyang RC190030

More Information
  • Corresponding author: WANG Ershen, E-mail: wanges_2016@126.com
  • Received Date: 21 Sep 2020
  • Accepted Date: 11 Dec 2020
  • Publish Date: 20 Jan 2022
  • In order to ensure the flight safety of general aviation aircraft in low-altitude airspace, an improved model of flight conflict detection based on support vector machine (SVM) is proposed. First, according to the physical form and flight status of the aircraft, a protection zone suitable for the general aircraft is established. Then, the improved ID3 decision tree algorithm is used to reduce the search space to a local method to select aircraft with potential flight conflicts, and choose the appropriate training set by random forest (RF) method. Finally, the tanh function is used to optimize the probability mapping of the easily saturated sigmoid function to the SVM classification results. Through simulation verification and contrastive analysis, the results show that the DBSACN algorithm based on density clustering is used to remove outliers, and the data generated by false alarms and missing alarms are removed as the training set to optimize the SVM classifier. Therefore, using improved flight conflict detection model, the false alarms and missing alarms are reduced by 0.6% and 1.6% respectively, and the execution efficiency of the algorithm is improved. The model has better anti-interference ability and stability.

     

  • loading
  • [1]
    黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68.

    HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68(in Chinese).
    [2]
    全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 323238.

    QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic UAV traffic management: An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323238(in Chinese).
    [3]
    GARIEL M, HANSMAN R, FRAZZOLI E. Impact of GPS and ADS-B reported accuracy on conflict detection performance in dense traffic: AIAA-2011-6893[R]. Reston: AIAA, 2011.
    [4]
    SHI L, WU R B. Multi-route mid-term conflict detection algorithm based on discretization of predicted position space[J]. Signal Processing, 2012, 28(11): 1521-1528. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XXCN201211004.htm
    [5]
    沈笑云, 周波, 曹博, 等. 基于冲突概率的低空自由飞行冲突检测算法[J]. 电光与控制, 2014, 21(6): 43-47. doi: 10.3969/j.issn.1671-637X.2014.06.009

    SHEN X Y, ZHOU B, CAO B, et al. A free flight conflict detection algorithm of low altitude airspace based on conflict probability[J]. Electronics Optics & Control, 2014, 21(6): 43-47(in Chinese). doi: 10.3969/j.issn.1671-637X.2014.06.009
    [6]
    王泽坤, 吴明功, 温祥西, 等. 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学学报, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650

    WANG Z K, WU M G, WEN X X, et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0650
    [7]
    GOSS J, RAJVANSHI R, SUBBARAO K. Aircraft conflict detection and resolution using mixed geometric and collision cone approaches[C]//AIAA Guidance, Navigation, and Control Conference and Exhibition. Reston: AIAA, 2004: 20-48.
    [8]
    VAN DAALEN C E, JONES T. Fast conflict detection using probability flow[J]. Automatica, 2009, 45(8): 1903-1909. doi: 10.1016/j.automatica.2009.04.010
    [9]
    黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018, 39(12): 262-274.

    HUANG Y, TANG J, LAO S Y. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 262-274(in Chinese).
    [10]
    ZHANG X J, GUANG X M, ZHU Y B, et al. Strategic flight approach based on multi-objective evolution algorithm with dynamic migration interval[J]. Chinese Journal of Aeronautics, 2015, 28(2): 556-563. doi: 10.1016/j.cja.2015.01.012
    [11]
    王尔申, 宋远上, 徐嵩, 等. 基于"北斗"的低空空域通航飞机导航监视技术研究[J]. 南京航空航天大学学报, 2019, 51(5): 586-591.

    WANG E S, SONG Y S, XU S, et al. Navigation and surveillance technology based on "BeiDou" for general aviation aircraft in low altitude airspace[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(5): 586-591(in Chinese).
    [12]
    LIN C E. Collision avoidance solution for low-altitude flights[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 2011, 225(7): 779-790. doi: 10.1177/0954410011399211
    [13]
    韩冬, 张学军, 聂尊礼, 等. 一种基于SVM的低空飞行冲突探测算法[J]. 北京航空航天大学学报, 2018, 44(3): 576-582. doi: 10.13700/j.bh.1001-5965.2017.0159

    HAN D, ZHANG X J, NIE Z L, et al. A conflict detection algorithm for low-altitude flights based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 576-582(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0159
    [14]
    宋英伟. 基于意图信息的塔台仿真计算研究[D]. 天津: 中国民航大学, 2009.

    SONG Y W. The research of tower simulation compulation based on intent information[D]. Tianjin: Civial Avitation University of China, 2009(in Chinese).
    [15]
    中国民用航空局. 民用航空空中交通管理规则: CCAR-93TM-R5[S]. 北京: 中国民用航空局, 2017.

    Civil Aviation Administration of China. Rules for air traffic management of civil aircraft: CCAR-93TM-R5[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese).
    [16]
    吴明功, 蒋旭瑞, 温祥西, 等. 基于支持向量机的概率型飞行冲突探测算法[J]. 飞行力学, 2019, 37(2): 56-60.

    WU M G, JIANG X R, WEN X X, et al. A probabilistic flight conflict detection algorithm based on SVM[J]. Flight Dynamics, 2019, 37(2): 56-60(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(753) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return