Fang Yi, Xiong Zhang, Wang Zhongxinet al. Interconnection between BACnet and Internet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(05): 578-582. (in Chinese)
Citation: WANG Ershen, SONG Yuanshang, TONG Gang, et al. Improved conflict detection model of low-altitude flight based on support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 8-14. doi: 10.13700/j.bh.1001-5965.2020.0533(in Chinese)

Improved conflict detection model of low-altitude flight based on support vector machine

doi: 10.13700/j.bh.1001-5965.2020.0533
Funds:

National Natural Science Foundation of China 62173237

National Natural Science Foundation of China 61571309

Key R & D Projects of Liaoning Province 2020JH2/10100045

Natural Science Foundation of Liaoning Province 2019-MS-251

Talent Project of Revitalization Liaoning XLYC1907022

High-Level Innovation Talent Project of Shenyang RC190030

More Information
  • Corresponding author: WANG Ershen, E-mail: wanges_2016@126.com
  • Received Date: 21 Sep 2020
  • Accepted Date: 11 Dec 2020
  • Publish Date: 20 Jan 2022
  • In order to ensure the flight safety of general aviation aircraft in low-altitude airspace, an improved model of flight conflict detection based on support vector machine (SVM) is proposed. First, according to the physical form and flight status of the aircraft, a protection zone suitable for the general aircraft is established. Then, the improved ID3 decision tree algorithm is used to reduce the search space to a local method to select aircraft with potential flight conflicts, and choose the appropriate training set by random forest (RF) method. Finally, the tanh function is used to optimize the probability mapping of the easily saturated sigmoid function to the SVM classification results. Through simulation verification and contrastive analysis, the results show that the DBSACN algorithm based on density clustering is used to remove outliers, and the data generated by false alarms and missing alarms are removed as the training set to optimize the SVM classifier. Therefore, using improved flight conflict detection model, the false alarms and missing alarms are reduced by 0.6% and 1.6% respectively, and the execution efficiency of the algorithm is improved. The model has better anti-interference ability and stability.

     

  • [1]
    黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68.

    HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68(in Chinese).
    [2]
    全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 323238.

    QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic UAV traffic management: An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323238(in Chinese).
    [3]
    GARIEL M, HANSMAN R, FRAZZOLI E. Impact of GPS and ADS-B reported accuracy on conflict detection performance in dense traffic: AIAA-2011-6893[R]. Reston: AIAA, 2011.
    [4]
    SHI L, WU R B. Multi-route mid-term conflict detection algorithm based on discretization of predicted position space[J]. Signal Processing, 2012, 28(11): 1521-1528.
    [5]
    沈笑云, 周波, 曹博, 等. 基于冲突概率的低空自由飞行冲突检测算法[J]. 电光与控制, 2014, 21(6): 43-47. doi: 10.3969/j.issn.1671-637X.2014.06.009

    SHEN X Y, ZHOU B, CAO B, et al. A free flight conflict detection algorithm of low altitude airspace based on conflict probability[J]. Electronics Optics & Control, 2014, 21(6): 43-47(in Chinese). doi: 10.3969/j.issn.1671-637X.2014.06.009
    [6]
    王泽坤, 吴明功, 温祥西, 等. 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学学报, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650

    WANG Z K, WU M G, WEN X X, et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0650
    [7]
    GOSS J, RAJVANSHI R, SUBBARAO K. Aircraft conflict detection and resolution using mixed geometric and collision cone approaches[C]//AIAA Guidance, Navigation, and Control Conference and Exhibition. Reston: AIAA, 2004: 20-48.
    [8]
    VAN DAALEN C E, JONES T. Fast conflict detection using probability flow[J]. Automatica, 2009, 45(8): 1903-1909. doi: 10.1016/j.automatica.2009.04.010
    [9]
    黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018, 39(12): 262-274.

    HUANG Y, TANG J, LAO S Y. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 262-274(in Chinese).
    [10]
    ZHANG X J, GUANG X M, ZHU Y B, et al. Strategic flight approach based on multi-objective evolution algorithm with dynamic migration interval[J]. Chinese Journal of Aeronautics, 2015, 28(2): 556-563. doi: 10.1016/j.cja.2015.01.012
    [11]
    王尔申, 宋远上, 徐嵩, 等. 基于"北斗"的低空空域通航飞机导航监视技术研究[J]. 南京航空航天大学学报, 2019, 51(5): 586-591.

    WANG E S, SONG Y S, XU S, et al. Navigation and surveillance technology based on "BeiDou" for general aviation aircraft in low altitude airspace[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(5): 586-591(in Chinese).
    [12]
    LIN C E. Collision avoidance solution for low-altitude flights[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 2011, 225(7): 779-790. doi: 10.1177/0954410011399211
    [13]
    韩冬, 张学军, 聂尊礼, 等. 一种基于SVM的低空飞行冲突探测算法[J]. 北京航空航天大学学报, 2018, 44(3): 576-582. doi: 10.13700/j.bh.1001-5965.2017.0159

    HAN D, ZHANG X J, NIE Z L, et al. A conflict detection algorithm for low-altitude flights based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 576-582(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0159
    [14]
    宋英伟. 基于意图信息的塔台仿真计算研究[D]. 天津: 中国民航大学, 2009.

    SONG Y W. The research of tower simulation compulation based on intent information[D]. Tianjin: Civial Avitation University of China, 2009(in Chinese).
    [15]
    中国民用航空局. 民用航空空中交通管理规则: CCAR-93TM-R5[S]. 北京: 中国民用航空局, 2017.

    Civil Aviation Administration of China. Rules for air traffic management of civil aircraft: CCAR-93TM-R5[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese).
    [16]
    吴明功, 蒋旭瑞, 温祥西, 等. 基于支持向量机的概率型飞行冲突探测算法[J]. 飞行力学, 2019, 37(2): 56-60.

    WU M G, JIANG X R, WEN X X, et al. A probabilistic flight conflict detection algorithm based on SVM[J]. Flight Dynamics, 2019, 37(2): 56-60(in Chinese).
  • Relative Articles

    [1]WANG Shiqi, LU Hui, ZHANG Yuxuan. Hexagonal grid sampling method for low-dimensional decision boundary identification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0526
    [2]WENG Xuehui, WANG Xiaofeng, YING Peng, LIU Zhongan, ZHOU Fang, QUAN Daying. Multi-level radar signal open-set recognition based on SVM and K-means[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0369
    [3]XU Zhiqiang, GUO Yudong, ZHANG Wenqiang, LIU Yatong, LI Ang, WANG Anni. Research on aerodynamic flow field characteristics of guide-injected icing detector[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0767
    [4]RAN Y T,PAN B F. A method for calculating reachability regions of lift re-entry vehicles with multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):904-909 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0157.
    [5]LIU Mengnan, MA Desheng, YIN Zhiren, MIAO Lin, ZHANG Kai, PANG Liping. Research on structural optimization of water evaporation heat sinks for aerospace vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0872
    [6]WANG H Y,GUO Y P. Autonomous path planning of departing aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):446-456 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0065.
    [7]TAO J,CAO Y F. UAV obstacle avoidance path-following method under time-varying wind disturbance at low altitudes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):175-182 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0956.
    [8]LIU Guanmian, ZHANG Fan, WEN Qing, YANG Kangzhi, QIN Hejun, CHENG Zhihang. Research on installation location of ice detector for large amphibious aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0061
    [9]KE Y,LYU Z W,ZHOU W L,et al. Tightly-coupled GNSS/INS spoofing detection algorithm for LS-SVM and robust estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):299-307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0231.
    [10]WANG X L,YIN H,HE M. Potential conflict prediction of mobile targets in airfield areas based on LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1850-1860 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0505.
    [11]XU J Q,LIN H P,GUO H. Multi-layer wave-shaped topology and thermal design method for aero-electric propulsion motors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1806-1818 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0498.
    [12]LIU Zengxu, YU Kaikai, FU Kexin, LIN Rou, XU Jinglei. Design and flow characteristics research of exhaust systems with wide altitude and speed ranges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0781
    [13]LAI J Y,GUAN W Q,LUO G Z,et al. Design of rectangular cross-section spring anti-reverse device for a certain type of aviation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1868-1876 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0750.
    [14]Cao Yueyao, Xue Tao, He Shanshan, Ai Jianliang, Dong Yiqun. Calculation of Beyond Visual Range Air Combat All-Domain Fire Field and Application of Situation Threat Assessment and Assisted Decision Making[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0399
    [15]YANG Yue, MA Bo-kai, CHENG Long. A cognitive load assessment method for multifactorial flight conflict detection[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0816
    [16]LI R G,ZHU J W,WU F D,et al. A decision tree-based discovery method for Bitcoin unreachable nodes[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1861-1867 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0558.
    [17]LI Bowen, LEI Xiaoyong. Flight task recognition and action segmentation based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0635
    [18]WANG Hong-yong, GUO Yu-peng. Research on the efficiency of aircraft autonomous conflict resolution based on evolutionary games[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0478
    [19]YANG J H,ZHANG F B,WANG J. Conflict resolution algorithms for UAV low-altitude flight based on reachable set[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1813-1827 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0542.
    [20]PENG Yu-xiao, HE Zhen, CHOU Jing-wen. Active Deformation Decision-Making for a Four-wing Variable Sweep Aircraft based on LSTM-DDPG Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0513
  • Cited by

    Periodical cited type(0)

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.6 %FULLTEXT: 10.6 %META: 86.1 %META: 86.1 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.3 %其他: 11.3 %上海: 1.7 %上海: 1.7 %东莞: 0.8 %东莞: 0.8 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伦敦: 0.4 %伦敦: 0.4 %保定: 0.1 %保定: 0.1 %北京: 6.2 %北京: 6.2 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %厦门: 0.7 %厦门: 0.7 %台州: 0.1 %台州: 0.1 %吉隆坡: 0.7 %吉隆坡: 0.7 %咸阳: 0.8 %咸阳: 0.8 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %大连: 0.4 %大连: 0.4 %天津: 1.9 %天津: 1.9 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.4 %常州: 0.4 %张家口: 0.6 %张家口: 0.6 %徐州: 0.7 %徐州: 0.7 %成都: 1.2 %成都: 1.2 %扬州: 0.5 %扬州: 0.5 %新乡: 0.1 %新乡: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.6 %杭州: 0.6 %武汉: 0.1 %武汉: 0.1 %沈阳: 1.7 %沈阳: 1.7 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %深圳: 6.2 %深圳: 6.2 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 1.4 %漯河: 1.4 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.4 %石家庄: 1.4 %福州: 0.2 %福州: 0.2 %芒廷维尤: 8.1 %芒廷维尤: 8.1 %芝加哥: 0.4 %芝加哥: 0.4 %营口: 0.1 %营口: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %西宁: 36.8 %西宁: 36.8 %西安: 0.4 %西安: 0.4 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.4 %贵阳: 0.4 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.8 %运城: 0.8 %邯郸: 0.2 %邯郸: 0.2 %郑州: 4.1 %郑州: 4.1 %重庆: 0.1 %重庆: 0.1 %锦州: 0.2 %锦州: 0.2 %长沙: 3.5 %长沙: 3.5 %青岛: 0.5 %青岛: 0.5 %鞍山: 0.1 %鞍山: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他上海东莞丹东伊利诺伊州伦敦保定北京南京南宁南昌南通厦门台州吉隆坡咸阳哈尔滨嘉兴大连天津宣城岳阳常州张家口徐州成都扬州新乡朝阳杭州武汉沈阳沧州洛阳深圳温州湖州漯河濮阳烟台石家庄福州芒廷维尤芝加哥营口葫芦岛西宁西安西雅图诺沃克贵阳辽阳运城邯郸郑州重庆锦州长沙青岛鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(859) PDF downloads(91) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return