Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SONG Chao, ZHOU Zhu, LI Weibin, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543(in Chinese)
Citation: SONG Chao, ZHOU Zhu, LI Weibin, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543(in Chinese)

Many-objective aerodynamic optimization design for rotor airfoils

doi: 10.13700/j.bh.1001-5965.2020.0543
More Information
  • Corresponding author: LI Weibin, E-mail: liweibin@nudt.edu.cn
  • Received Date: 23 Sep 2020
  • Accepted Date: 05 Feb 2021
  • Publish Date: 20 Jan 2022
  • The design of advanced rotor airfoils is a typical multi-design-condition and multi-objective optimization problem, and traditional optimization methods cannot meet the requirement of high-dimensional multi-objective optimization design for airfoils. In this paper, a many-objective optimization design method for rotor airfoils is proposed based on the multi-objective evolutionary algorithm based on decomposition (MOEA/D), which considers the lift and drag performance under both low-and high-speed conditions, moment performance and drag divergence performance. The high-precision kriging model is utilized to improve the optimization design efficiency. Five-objective global optimization design for the inner section and middle section of the rotor airfoil is conducted in this paper. The optimal Pareto solution set is clustering analyzed by the self-organizing mapping (SOM) and a representative rotor airfoil is selected and analyzed using the CFD solver. The results show that, for the airfoil in the middle section, the magnitude of the moment coefficient at low speed is reduced by about 50.7%. At high speed, the maximum lift coefficient is improved by about 6.5%, and the maximum lift-to-drag ratio is increased by about 7.7%, and meanwhile the drag divergence performance is enhanced. Evident performance improvement for the inner section airfoil is also achieved. The results show that the MODA/D is suitable for many-objective aerodynamic optimization design problems, and the proposed method can effectively improve the low-and high-speed aerodynamic performance design capability for the rotor airfoil.

     

  • loading
  • [1]
    邓景辉. 直升机旋翼气动基础技术[M]. 北京: 航空工业出版社, 2013: 1-3, 112, 256.

    DENG J H. Aerodynamic methodology of a helicopter rotor[M]. Beijing: Aviation Industry Press, 2013: 1-3, 112, 256(in Chinese).
    [2]
    LEISHMAN G J. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006: 1, 387.
    [3]
    杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207008.htm

    YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207008.htm
    [4]
    王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1487-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201606026.htm

    WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1487-1495(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201606026.htm
    [5]
    WANG Q, ZHAO Q J. Rotor aerodynamic shape design for improving performance of an unmanned helicopter[J]. Aerospace Science and Technology, 2019, 13(30): 1-10.
    [6]
    MASSARO A, BENINI E. Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithms[J]. Journal of Aircraft, 2012, 49(2): 375-383. doi: 10.2514/1.C001017
    [7]
    ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552. doi: 10.1016/j.cja.2016.09.005
    [8]
    DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
    [9]
    ZHANG Q, LI H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. doi: 10.1109/TEVC.2007.892759
    [10]
    PRYKE A, MOSTAGHIM S, NAZEMI A. Heatmap visualization of population based multi-objective algorithms[C] //Proceedings of Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 361-375.
    [11]
    INSELBERG A. Parallel coordinates: Visual multidimensional geometry and its applications[M]. Berlin: Springer, 2009.
    [12]
    KOHONEN T. Self-organizing maps[M]. Berlin: Springer, 2001.
    [13]
    HOFFMAN P, GRINSTEIN G, MARX K, et al. DNA visual and analytic data mining[C]//1997 Proceedings of IEEE Visual Conference. Piscataway: IEEE Press, 1997: 437-441.
    [14]
    BLASCO X, HERRERO J M, SANCHIS J, et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multi-objective optimization[J]. Information Sciences, 2008, 178(20): 3908-3924. doi: 10.1016/j.ins.2008.06.010
    [15]
    KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [16]
    王超. 基于代理模型的高效气动优化与高维多目标问题研究[D]. 西安: 西北工业大学, 2018.

    WANG C. Research on surrogate-based efficient aerodynamic optimization and many-objective problems[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [17]
    DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. doi: 10.1137/S1052623496307510
    [18]
    黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805009.htm

    HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805009.htm
    [19]
    KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [20]
    GIUNTA A, WOJTKIEWICZ S, ELDRED M. Overview of modern design of experiments methods for computational simulations[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(8)

    Article Metrics

    Article views(444) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return