Citation: | ZHANG Xiayang, ZHANG Kai, ZHAO Qijun, et al. Application analysis of Durbin method in solving dynamic response of damped beam[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 67-78. doi: 10.13700/j.bh.1001-5965.2020.0550(in Chinese) |
Based on Timoshenko's beam theory and K-V damping model, the method for the frequency domain vibration solution of the non-proportionally damped beam under a stationary impact load is studied. The dynamic response of the damped beam is derived by introducing traditional Laplace transformation and Durbin's Laplace inverse transformation (Laplace method). Three typical beam boundaries are taken into consideration in the derivation of Laplace method to demonstrate its applicability. Thereafter, the numerical method is validated under a special proportional damping condition and compared with the modal superposition method. The numerical experiments fully investigate the impact of algorithmic parameters and system parameters. The calculation results indicate that the dynamic responses of the fundamental damped beam system can be reasonably computed by the Laplace method under various boundary and loading conditions, showing comparable accuracy with the modal superposition method. However, the Laplace method is slightly affected by the slenderness ratio of the system. Although Laplace method is easier to manipulate than traditional modal superposition method, its accuracy is affected by its inherent numerical parameters and step external load type, and thus the algorithm stability needs further improvement.
[1] |
LABUSCHAGNE A, RENSBURG N F J V, MERWE A J V D. Comparison of linear beam theories[J]. Mathematical and Computer Modelling, 2009, 49(1-2): 20-30. doi: 10.1016/j.mcm.2008.06.006
|
[2] |
STEPHEN N G. The second spectrum of Timoshenko beam theory—Further assessment[J]. Journal of Sound and Vibration, 2006, 292(1-2): 372-389. doi: 10.1016/j.jsv.2005.08.003
|
[3] |
HAN S M, BENAROYA H, WEI T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988. doi: 10.1006/jsvi.1999.2257
|
[4] |
KOCATVRK T, SIMSEK M. Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load[J]. Computers and Structures, 2006, 84(31): 2113-2127.
|
[5] |
邢誉峰. 有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J]. 力学学报, 1999, 31(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199901007.htm
XING Y F. The characteristics of Timoshenko beam during the process of elastic impact and contact[J]. Acta Mechanica Sinica, 1999, 31(1): 68-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199901007.htm
|
[6] |
SHIM V P W, TOH S L, QUAH S E. Impact-induced flexural waves in a Timoshenko beam-Shearographic detection and analysis[J]. Experimental Mechanics, 1994, 34(4): 340-348. doi: 10.1007/BF02325149
|
[7] |
YAMAMOTO S, SATO K, KOSEKI H. A study on lateral impact of Timoshenko beam[J]. Computational Mechanics, 1990, 6(2): 101-108. doi: 10.1007/BF00350516
|
[8] |
DADFARNIA M, JALILI N, ESMAILZADEH E A. Comparative study of the Galerkin approximation utilized in the Timoshenko beam theory[J]. Journal of Sound and Vibration, 2005, 280(3-5): 1132-1142. doi: 10.1016/j.jsv.2004.02.028
|
[9] |
YAMANAKA K, HEPPLER G R, HUSEYIN K. The stability of a flexible link with a tip rotor and a compressive tip load[J]. IEEE Transactions on Robotics and Automation, 1996, 11(6): 882-887.
|
[10] |
AZAM S E, MOFID M, KHORASKANI R A. Dynamic response of Timoshenko beam under moving mass[J]. Scientia Iranica, 2013, 20(1): 50-56.
|
[11] |
XING Y, QIAO Y, ZHU D. Elastic impact on finite Timoshenko beam[J]. Acta Mechanica Sinica, 2002, 18(3): 252-263. doi: 10.1007/BF02487953
|
[12] |
周健斌, 章俊杰, 孟光. 计及陀螺效应的翼吊式机翼-发动机系统结构动力学特性研究[J]. 振动与冲击, 2012, 31(6): 145-149. doi: 10.3969/j.issn.1000-3835.2012.06.030
ZHOU J B, ZHANG J J, MENG G. Structural dynamic characteristics of a wing-engine system with gyro effects[J]. Journal of Vibration and Shock, 2012, 31(6): 145-149(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.06.030
|
[13] |
赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007.
ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007(in Chinese).
|
[14] |
LI L, HEPPLER G R, HUSEYIN K. Stability of a flexible link with an arbitrarily oriented tip rotor and a conservative tip load[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2000, 2: 1472-1477.
|
[15] |
李攀. 旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D]. 南京: 南京航空航天大学, 2010.
LI P. Rotor unsteady free-vortex wake model and investigation on high-fidelity modeling of helicopter flight dynamic[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
|
[16] |
FRIEDMANN P P, STRAUB F. Application of the finite element method to rotary-wing aeroelasticity[J]. Journal of the American Helicopter Society, 1978, 25(1): 36-44.
|
[17] |
SU Y C, MA C C. Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods[J]. International Journal of Solids and Structures, 2011, 48(3): 535-552.
|
[18] |
DAVIES B, MARTIN B. Numerical inversion of the Laplace transform: A survey and comparison of methods[J]. Journal of Computational Physics, 1979, 33(1): 1-32. doi: 10.1016/0021-9991(79)90025-1
|
[19] |
MILLER M K, GUY W T. Numerical inversion of the Laplace transform by use of Jacobi polynomials[J]. SIAM Journal on Numerical Analysis, 1966, 3(4): 624-635. doi: 10.1137/0703055
|
[20] |
PIESSENS R. Some aspects of Gaussian quadrature formulae for the numerical inversion of the Laplace transform[J]. Computer Journal, 1971, 14(4): 433-436. doi: 10.1093/comjnl/14.4.433
|
[21] |
DUFFY D G. On the numerical inversion of Laplace transforms: Comparison of three new methods on characteristic problems from applications[J]. ACM Transactions on Mathematical Software, 1993, 19(3): 333-359. doi: 10.1145/155743.155788
|
[22] |
DUBNER H, ABATE J. Numerical inversion of Laplace transforms by relating them to the finite fourier cosine transform[J]. Journal of the ACM, 1968, 15(1): 115-123. doi: 10.1145/321439.321446
|
[23] |
DURBIN F. Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method[J]. Computer Journal, 1974, 17(4): 371-376. doi: 10.1093/comjnl/17.4.371
|
[24] |
HU M, WANG A, ZHANG X. Approximate analytical solutions and experimental analysis for transient response of constrained damping cantilever beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1359-1370. doi: 10.1007/s10483-010-1368-9
|
[25] |
GU L, QIN Z, CHU F. Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam[J]. Mechanical Systems and Signal Processing, 2015, 60-61(52): 619-643.
|
[26] |
ZHANG X, ZHU M, LIANG H. Dynamic analysis of the continuous fluid-structure system based on Timoshenko model and considering damping[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2017: 1-17.
|
[27] |
JENSEN J J. On the shear coefficient in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33(2): 621-635.
|
[28] |
ZHAO H L, LIU K S, ZHANG C G. Stability for the Timoshenko beam system with local Kelvin-Voigt damping[J]. Acta Mathematica Sinica, 2005, 21(3): 655-666. doi: 10.1007/s10114-003-0256-4
|
[29] |
SU Y C, MA C C. Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods[J]. International Journal of Solids and Structures, 2012, 49(9): 1158-1176. doi: 10.1016/j.ijsolstr.2012.01.013
|
[30] |
BOLEY B, CHAO C. Some solutions of the Timoshenko beam equations[J]. Journal of Applied Mechanics, 1955, 22(4): 579-586. doi: 10.1115/1.4011158
|
[31] |
张夏阳, 祝明, 武哲. 基于K-V阻尼模型的铁木辛柯梁振动响应分析[J]. 北京航空航天大学学报, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196
ZHANG X Y, ZHU M, WU Z. Response analysis of Timoshenko beam based on K-V damping model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 500-507(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0196
|