Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
HOU Tianrui, XING Yuming, ZHENG Wenyuan, et al. Solidification heat release of copper foam/low-melting-point alloy composite phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553(in Chinese)
Citation: HOU Tianrui, XING Yuming, ZHENG Wenyuan, et al. Solidification heat release of copper foam/low-melting-point alloy composite phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553(in Chinese)

Solidification heat release of copper foam/low-melting-point alloy composite phase change material

doi: 10.13700/j.bh.1001-5965.2020.0553
Funds:

Aeronautical Science Foundation of China 20172851018

More Information
  • Corresponding author: HAO Zhaolong, E-mail: haozhaolong@buaa.edu.cn
  • Received Date: 27 Sep 2020
  • Accepted Date: 01 Nov 2020
  • Publish Date: 20 Mar 2022
  • In order to research the competence of the copper foam/low-melting-point alloy (LMPA) composite material to recover to the initial state in the intermittent exothermic working environment and the influence of the addition of copper foam with different porosity on the solidification exothermic process, this paper compares and analyzes the solidification exothermic process of 47 alloys and n-tricosane before and after compositing with copper foam through numerical simulation, and adjusts the porosity of the copper foam/47 alloy composite material to calculate the temperature change curve of the simulation chip temperature during the solidification exothermic process. The results show that the addition of copper foam can promote the solidification process of the two types of materials, and the time of the simulation chip to recover to the target temperature is shortened by 6.6% and 47.7%. Due to the difference in volume latent heat value, the copper foam/47 alloy needs to release more heat during solidification, and it takes longer to recover to the target temperature, which is 1.52 times that of the n-tricosane composite. With the increase of porosity, the time that is taken for the composite phase change material to return to room temperature does not change much. Considering the influence of porosity on the thermal control process of phase change, comprehensive consideration should be given to actual use.

     

  • loading
  • [1]
    陈秦. 石墨泡沫炭基相变储能材料传热分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.

    CHEN Q. Heat transfer analysis of graph-ite goams infiltrated with phase change meterials for energy storage[D]. Harbin: Harbin Engineering University, 2013(in Chinese).
    [2]
    LANSANCE C J M, SIMONS R E. Advances in high-performance cooling for electronics[J]. Electronics Cooling, 2005, 11(4): 22-39.
    [3]
    ZILIO C, RIGHETTI G, MANCIN S, et al. Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-vapor cycle system[J]. Thermal Science and Engineering Progress, 2018, 5: 107-116. doi: 10.1016/j.tsep.2017.11.002
    [4]
    TONG X C. Advanced materials for thermal management of electronic packaging[M]. Berlin: Springer, 2011: 39-65.
    [5]
    STEINBERG D S. Cooling techniques for electronic equipment[M]. New York: Wiley, 1980.
    [6]
    MEHLING H, CABEZA L F, YAMAHA M. Phase change materials: Application fundamentals[M]//PAKSOY H O. Thermal energy storage for sustainable energy consumption. Berlin: Springer, 2007: 279-313.
    [7]
    赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [8]
    GE H, LI H, MEI S, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable & Sustainable Energy Reviews, 2013, 21(5): 331-346.
    [9]
    葛浩山. 低熔点金属相变传热方法的研究与应用[D]. 北京; 中国科学院大学, 2013.

    GE H S. Research and application of phase transition heat transfer method for low melting point metals[D]. Beijing: University of Chinese Academy of Sciences, 2013(in Chinses).
    [10]
    吴雨越. 基于低熔点合金的相变储能式散热器瞬态性能实验研究[D]. 杭州: 浙江大学, 2016.

    WU Y Y. Experimental study on transient performance of phase change energy storage radiator based on low melting point alloy[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [11]
    WANG Z, ZHANG Z, JIA L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. doi: 10.1016/j.applthermaleng.2015.01.009
    [12]
    丁小恒, 孟松鹤, 解维华, 等. 金属相变材料热沉传热试验与仿真[J]. 复合材料学报, 2013, 30(S1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1040.htm

    DING X H, MENG S H, XIE W H, et al. Experiment and simulation for metallic phase change materials heat sink[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 205-211(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1040.htm
    [13]
    胡锦炎. 固液相变储能热沉的理论与实验研究[D]. 武汉: 华中科技大学, 2017.

    HU J Y. Theoretical and experimental research on thermal storage heat sink based on solid-liquid phase change[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese).
    [14]
    ZHAO L, XING Y, LIU X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material[J]. Renewable Energy, 2020, 146(2): 1578-1587.
    [15]
    MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867. doi: 10.1016/j.enconman.2004.06.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(882) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return