Du Jun, Wang Huiyu, Cai Guobiaoet al. Numeric Simulation of Plume Contamination in Vacuum[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6): 707-710. (in Chinese)
Citation: HE Jian, GUO Hongyan, YAO Yuan, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393. doi: 10.13700/j.bh.1001-5965.2020.0559(in Chinese)

Irregular flight recovery technique based on accurate transit time prediction

doi: 10.13700/j.bh.1001-5965.2020.0559
Funds:

National Key R & D Program of China 2020YFB2104400

National Natural Science Foundation of China 61602016

National Natural Science Foundation of China U2033205

More Information
  • Corresponding author: BIAN Lei, E-mail: bianlei@pku.edu.cn
  • Received Date: 28 Sep 2020
  • Accepted Date: 18 Dec 2020
  • Publish Date: 20 Mar 2022
  • In previous studies, the general method for flight recovery problem used fixed flight transit time, rather than considered the result of flight transit time changes in real airports. We propose a LightGBM model to predict accurate transit time based on the airport-flight features from total 235 airports and all flights in China. The numerical results show that our model has 6.783 minutes root mean square error using real flights data. We construct an irregular flight recovery model based on effective transit time, and specifically design a column vector generation algorithm to solve this model. This algorithm can solve the problem of airport traffic flow decrease, airport closure, aircraft maintenance and other irregular conditions under the goal of minimizing flight delays, the number of cancellations, and the number of aircraft changes by canceling, changing the planned time, and replacing aircraft. Tests on actual operating data of airlines prove that the irregular flight recovery method based on transit time prediction is effective. The real case of large-scale flight delays test shows the total delay time can be reduced by 34.2%. The comparison between the spatio-temporal network algorithm and the column vector generation algorithm shows that the proposed flight recovery method also can reduce the recovery cost under the premise of the same recovery result.

     

  • [1]
    赵秀丽, 朱金福, 郭梅. 不正常航班延误调度型及算法[J]. 系统工程理论与实践, 2008, 28(4): 2-4.

    ZHAO X L, ZHU J F, GUO M. Study on modelling and algorithm of irregular flight delay operation[J]. Systems Engineering-Theory & Practice, 2008, 28(4): 2-4(in Chinese).
    [2]
    LIANG Z, XIAO F, QIAN X, et al. A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility[J]. Transportation Research Part B: Methodological, 2018, 113: 70-90. doi: 10.1016/j.trb.2018.05.007
    [3]
    YU G, BARD J F, ARGUELLO M F. Optimizing aircraft routings in response to groundings and delays[J]. ⅡE Transactions, 2001, 33(10): 931-947.
    [4]
    乐美龙, 王婷婷, 吴聪聪. 基于改进的GRASP算法的飞机优化恢复研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(2): 166-170.

    LE M L, WANG T T, WU C C. Study on aircrafts optimal recovery based on improved GRASP algorithm[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2013, 27(2): 166-170(in Chinese).
    [5]
    KE G, MENG Q, WANG T, et al. A communication-efficient parallel algorithm for decision tree[C]//Advances in Neural Information Processing Systems, 2016: 1279-1287.
    [6]
    TEODOROVIĆ D, GUBERINIĆ S. Optimal dispatching strategy on an airline network after a schedule perturbation[J]. European Journal of Operational Research, 1984, 15(2): 178-182. doi: 10.1016/0377-2217(84)90207-8
    [7]
    JARRAH A I, YU G, KRISHNAMURTHY N, et al. A decision support framework for airline flight cancellations and delays[J]. Transportation Science, 1993, 27(3): 266-280. doi: 10.1287/trsc.27.3.266
    [8]
    YAN S, LIN C G. Airline scheduling for the temporary closure of airports[J]. Transportation Science, 1997, 31(1): 72-82. doi: 10.1287/trsc.31.1.72
    [9]
    CAO J M, KANAFANI A. Real-time decision support for integration of airline flight cancellations and delays. Part I: Mathematical formulation[J]. Transportation Planning and Technology, 1997, 20(3): 183-199. doi: 10.1080/03081069708717588
    [10]
    CAO J M, KANAFANI A. Real-time decision support for integration of airline flight cancellations and delays. Part Ⅱ: Algorithm and computational experiments[J]. Transportation Planning and Technology, 1997, 20(3): 201-217. doi: 10.1080/03081069708717589
    [11]
    THENGVALL B G, YU G, BARD J F. Multiple fleet aircraft schedule recovery following hub closures[J]. Transportation Research Part A: Policy and Practice, 2001, 35(4): 289-308. doi: 10.1016/S0965-8564(99)00059-2
    [12]
    THENGVALL B G, BARD J F, YU G. A bundle algorithm approach for the aircraft schedule recovery problem during hub closures[J]. Transportation Science, 2003, 37(4): 392-407. doi: 10.1287/trsc.37.4.392.23281
    [13]
    白凤, 朱金福, 高强. 基于列生成法的不正常航班调度[J]. 系统工程理论与实践, 2010, 30(11): 2036-2045. doi: 10.12011/1000-6788(2010)11-2036

    BAI F, ZHU J F, GAO Q. Disrupted airline schedules dispatching based on column generation methods[J]. Systems Engineering-Theory & Practice, 2010, 30(11): 2036-2045(in Chinese). doi: 10.12011/1000-6788(2010)11-2036
    [14]
    汪瑜, 孙宏. 基于航班时空网络模型的网络型机队随机规划方法[J]. 数学的实践与认识, 2018, 48(6): 58-68.

    WANG Y, SUN H. A network-type fleet stochastic planning methodology based on flight time space network model[J]. Mathematics in Practice and Theory, 2018, 48(6): 58-68(in Chinese).
    [15]
    田倩南, 李昆鹏, 李文莉, 等. 受扰航班恢复问题的优化方案研究[J]. 管理学报, 2018, 15(10): 1081-1088. doi: 10.3969/j.issn.1672-884x.2018.10.017

    TIAN Q N, LI K P, LI W L, et al. The research on optimization of disrupted flights recovery problem[J]. Chinese Journal of Management, 2018, 15(10): 1081-1088(in Chinese). doi: 10.3969/j.issn.1672-884x.2018.10.017
    [16]
    QIANG H A O, WEI F A N. Flight recovery model based on consideration of passenger satisfaction robustness[J]. Modern Electronics Technique, 2018, 2018(18): 32.
    [17]
    唐小卫, 高强, 朱金福. 不正常航班恢复模型的贪婪模拟退火算法研究[J]. 预测, 2010, 29(1): 66-70.

    TANG X W, GAO Q, ZHU J F. Research on greedy simulated annealing algorithm of irregular flight schedule recovery model[J]. Forecasting, 2010, 29(1): 66-70(in Chinese).
    [18]
    吴刚, 严俊. 不正常航班恢复的一种改进的列生成算法[J]. 南京航空航天大学学报, 2014, 46(2): 329-334.

    WU G, YAN J. Improved column generation algorithm for disrupted airline schedules recovery[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 329-334(in Chinese).
    [19]
    乐美龙, 王婷婷, 吴聪聪. 多机型不正常航班恢复的时空网络模型[J]. 四川大学学报(自然科学版), 2013, 50(3): 477-483.

    LE M L, WANG T T, WU C C. The time-band model for recovery of multi-type aircrafts' disrupted flights[J]. Journal of Sichuan University(Natural Science Edition), 2013, 50(3): 477-483(in Chinese).
    [20]
    FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
    [21]
    KE G, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154.
    [22]
    王芳杰, 王福建, 王雨晨, 等. 基于LightGBM算法的公交行程时间预测[J]. 交通运输系统工程与信息, 2019, 19(2): 116-121.

    WANG F J, WANG F J, WANG Y C, et al. Bus travel time prediction based on light gradient boosting machine algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 116-121(in Chinese).
    [23]
    顾桐, 许国良, 李万林, 等. 基于集成LightGBM和贝叶斯优化策略的房价智能评估模型[J]. 计算机应用, 2020, 40(9): 2762-2767.

    GU T, XU G L, LI W L, et al. Intelligent house price evaluation model based on ensemble LightGBM and Bayesian optimization strategy[J]. Journal of Computer Applications, 2020, 40(9): 2762-2767(in Chinese).
    [24]
    ZHANG L, YANG H, WANG K, et al. Measuring imported case risk of COVID-19 from inbound international flights-A case study on China[J]. Journal of Air Transport Management, 2020, 89: 101918.
  • Cited by

    Periodical cited type(18)

    1. 胥洪,胡家文,钟罡. 基于滚动时域控制的飞机维修路径恢复策略. 系统工程与电子技术. 2025(01): 164-172 .
    2. 李国,王伟倩,曹卫东. 基于混合模型的多类型机场航班过站时间预测. 计算机工程与设计. 2025(02): 633-641 .
    3. 任轩禾,史晓红,唐锐. 基于航班网络的货运航班综合恢复. 航空计算技术. 2025(02): 23-27+32 .
    4. 陈可嘉,吴钧涛. 中断离港航班恢复的改进NSGA2算法. 北京航空航天大学学报. 2024(06): 1784-1793 . 本站查看
    5. 董兵,彭自琛. 资源受限条件下受扰航班恢复研究. 舰船电子工程. 2024(04): 51-56 .
    6. 丁建立,刘德康. 机场航班延误恢复的强化学习算法. 重庆交通大学学报(自然科学版). 2024(09): 50-58 .
    7. 王超峰,贾英泽. 民航飞机排班计划的研究综述. 科技和产业. 2024(20): 204-209 .
    8. 罗凤娥,卫昌波,杨思瀚,杜裕鑫,徐勇,韩晓彤. 基于组合赋权—VIKOR法的航班恢复策略评估方法. 舰船电子工程. 2024(10): 109-113 .
    9. 罗凤娥,张鑫,谢玲娟. 基于改进列生成算法的非正常航班恢复研究. 航空计算技术. 2024(06): 22-26 .
    10. 余洲,张兆宁. 终端区交通态势利导及实现方法. 北京航空航天大学学报. 2024(12): 3894-3902 . 本站查看
    11. 李雅聪,邵荃,唐小卫. 考虑离场航班公平性的航班恢复优化模型. 科学技术与工程. 2023(07): 3084-3090 .
    12. 于昕曜,朱宁,马延明,贺正冰. 考虑异常车次的公交车辆调度计划问题研究. 系统工程理论与实践. 2023(03): 910-928 .
    13. 曹卫东,张金迪,刘晨宇. 基于ST-LightGBM的机场离港航班延误预测. 陕西科技大学学报. 2023(04): 166-172 .
    14. 吴哲,段炼,孙永鹏,尹文静. 基于离散时空网络的不正常航班恢复研究. 航空计算技术. 2023(04): 47-50+55 .
    15. 丁建立,吴俣. 基于数字孪生的航班链延误动态预测模型. 南京航空航天大学学报. 2023(05): 859-867 .
    16. 卢婷婷,刘计民,曲晨瑞,张兆宁. 基于满意博弈论的大面积航班延误协同恢复策略. 交通信息与安全. 2023(05): 95-106 .
    17. 任新惠,孙一楠,江红. 航班延误下旅客出行行为异质性研究. 北京交通大学学报. 2022(01): 40-50 .
    18. 曹卫东,梁陈. 基于MA-BiLSTM的多时间窗航班过站时间估计方法. 陕西科技大学学报. 2022(04): 183-190 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(10)

    Article Metrics

    Article views(499) PDF downloads(438) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return