Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560(in Chinese)
Citation: LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560(in Chinese)

Effect of pulsed jet on aerodynamic performance of circulation control airfoil

doi: 10.13700/j.bh.1001-5965.2020.0560
More Information
  • Corresponding author: ZHANG Dengcheng, E-mail: dengcheng_zhang@163.com
  • Received Date: 28 Sep 2020
  • Accepted Date: 11 Dec 2020
  • Publish Date: 20 Mar 2022
  • The aerodynamic performance of steady jet is poor at high angle of attack. With the help of pulsed jet, the aerodynamic performance at high angle of attack can be effectively improved and the mass flow rate of jet can be reduced. The unsteady numerical simulation method is used to calculate the aerodynamic characteristics and analyze the flow field of the circulation control airfoil under pulsed jet. The effects of duty cycle and frequency on the amplitude of time-averaged lift and lift pulsation are summarized. The flow mechanism of pulsed jet at different angles of attack is analyzed. Furthermore, the influence law of jet momentum coefficient is pointed out, and the lift pulsation phenomenon is effectively alleviated with the help of the superposition effect of pulsed jet and steady jet. The results show that, under low duty cycle, the pulsed jet can greatly reduce the mass flow rate under the same lift coefficient, but the amplitude of lift pulsation is larger at the same time. At low angle of attack, the lift coefficient increases at first and then decreases with the increase of frequency, but the overall change is not obvious, and at high angle of attack, the lift coefficient increases continuously with the increase of frequency. The pulsed jet can delay the stall angle of attack and widen the angle of attack, and this advantage becomes more obvious with the increase of momentum coefficient. With the help of the superposition effect of the pulsed jet and the steady jet, the lift pulsation under the pulsed jet can be effectively alleviated and the flight conditions can be achieved.

     

  • loading
  • [1]
    KING R. Active flow control[C]//Active Flow Control 2006. Berlin: Springer, 2006.
    [2]
    ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [3]
    JOLSLIN R D, JONES G S. Applications of circulation control technology[M]. Reston: AIAA, 2006: 1-614.
    [4]
    ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. doi: 10.2514/3.44996
    [5]
    SHAH N, WONG C, KONTIS K. Active flow control using steady and pulsed blowing at subsonic speeds[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 742.
    [6]
    SEIFERT A. Closed-loop active flow control systems: Actuators[C]//Active Flow Control 2007. Berlin: Springer, 2007: 85-102.
    [7]
    YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integrations[R]. Hampton: NASA Langley Research Centre, 1998: 1-122.
    [8]
    JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]//1st Flow Control Conference. Reston: AIAA, 2002: 3157.
    [9]
    KANISTRAS K, SAKA P C, VALAVANIS K P, et al. Wind tunnel investigation of a circulation control wing with dual-radius flaps[J]. Journal of Aircraft, 2018, 55(4): 1731-1741. doi: 10.2514/1.C034208
    [10]
    JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London: Royal Aeronautical Society, 2008: 22-24.
    [11]
    WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0282.
    [12]
    朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm

    ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm
    [13]
    张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报, 2015, 16(1): 10-13. doi: 10.3969/j.issn.1009-3516.2015.01.003

    ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University, 2015, 16(1): 10-13(in Chinese). doi: 10.3969/j.issn.1009-3516.2015.01.003
    [14]
    雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm
    [15]
    SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [16]
    李家春, 杨卫东. 直升机环量控制尾梁截面形状分析[J]. 空气动力学学报, 2015, 33(2): 239-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502014.htm

    LI J C, YANG W D. An analysis of cross section of helicopter tail boom for NOTARTM system[J]. Acta Aerodynamica Sinica, 2015, 33(2): 239-245(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502014.htm
    [17]
    姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报, 2018, 39(7): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm

    JIANG Y B, ZHANG L, HUANG Y, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 64-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm
    [18]
    JONES G, ENGLAR R. Advances in pneumatic controlled high lift systems through pulsed blowing[C]//21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3411.
    [19]
    王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201811003.htm

    WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37-48 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201811003.htm
    [20]
    WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. doi: 10.2514/1.J056787
    [21]
    SWANSON R C, RUMSEY C L. Computation of circulation control airfoil flows[J]. Computers and Fluids, 2009, 38(10): 1925-1942. doi: 10.1016/j.compfluid.2009.05.002
    [22]
    SWANSON R C, RUMSEY C L, ANDERS S G. Progress towards computational method for circulation control airfoils[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 14527-14553.
    [23]
    LIU Y, SANKAR L, ENGLAR R, et al. Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control wing airfoil[C]//39th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001: 704.
    [24]
    LEFEBVRE A, DANO B, BARTOW W B, et al. Performance and energy expenditure of coflow jet airfoil with variation of Mach number[J]. Journal of Aircraft, 2016, 53(6): 1757-1767. doi: 10.2514/1.C033113
    [25]
    叶坤, 叶正寅, 武洁, 等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报, 2018, 36(3): 518-528. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803017.htm

    YE K, YE Z Y, WU J, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803017.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(323) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return