Citation: | LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560(in Chinese) |
The aerodynamic performance of steady jet is poor at high angle of attack. With the help of pulsed jet, the aerodynamic performance at high angle of attack can be effectively improved and the mass flow rate of jet can be reduced. The unsteady numerical simulation method is used to calculate the aerodynamic characteristics and analyze the flow field of the circulation control airfoil under pulsed jet. The effects of duty cycle and frequency on the amplitude of time-averaged lift and lift pulsation are summarized. The flow mechanism of pulsed jet at different angles of attack is analyzed. Furthermore, the influence law of jet momentum coefficient is pointed out, and the lift pulsation phenomenon is effectively alleviated with the help of the superposition effect of pulsed jet and steady jet. The results show that, under low duty cycle, the pulsed jet can greatly reduce the mass flow rate under the same lift coefficient, but the amplitude of lift pulsation is larger at the same time. At low angle of attack, the lift coefficient increases at first and then decreases with the increase of frequency, but the overall change is not obvious, and at high angle of attack, the lift coefficient increases continuously with the increase of frequency. The pulsed jet can delay the stall angle of attack and widen the angle of attack, and this advantage becomes more obvious with the increase of momentum coefficient. With the help of the superposition effect of the pulsed jet and the steady jet, the lift pulsation under the pulsed jet can be effectively alleviated and the flight conditions can be achieved.
[1] |
KING R. Active flow control[C]//Active Flow Control 2006. Berlin: Springer, 2006.
|
[2] |
ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
|
[3] |
JOLSLIN R D, JONES G S. Applications of circulation control technology[M]. Reston: AIAA, 2006: 1-614.
|
[4] |
ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. doi: 10.2514/3.44996
|
[5] |
SHAH N, WONG C, KONTIS K. Active flow control using steady and pulsed blowing at subsonic speeds[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 742.
|
[6] |
SEIFERT A. Closed-loop active flow control systems: Actuators[C]//Active Flow Control 2007. Berlin: Springer, 2007: 85-102.
|
[7] |
YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integrations[R]. Hampton: NASA Langley Research Centre, 1998: 1-122.
|
[8] |
JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]//1st Flow Control Conference. Reston: AIAA, 2002: 3157.
|
[9] |
KANISTRAS K, SAKA P C, VALAVANIS K P, et al. Wind tunnel investigation of a circulation control wing with dual-radius flaps[J]. Journal of Aircraft, 2018, 55(4): 1731-1741. doi: 10.2514/1.C034208
|
[10] |
JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London: Royal Aeronautical Society, 2008: 22-24.
|
[11] |
WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0282.
|
[12] |
朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428.
ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese).
|
[13] |
张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报, 2015, 16(1): 10-13. doi: 10.3969/j.issn.1009-3516.2015.01.003
ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University, 2015, 16(1): 10-13(in Chinese). doi: 10.3969/j.issn.1009-3516.2015.01.003
|
[14] |
雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21.
LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21(in Chinese).
|
[15] |
SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
|
[16] |
李家春, 杨卫东. 直升机环量控制尾梁截面形状分析[J]. 空气动力学学报, 2015, 33(2): 239-245.
LI J C, YANG W D. An analysis of cross section of helicopter tail boom for NOTARTM system[J]. Acta Aerodynamica Sinica, 2015, 33(2): 239-245(in Chinese).
|
[17] |
姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报, 2018, 39(7): 64-72.
JIANG Y B, ZHANG L, HUANG Y, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 64-72(in Chinese).
|
[18] |
JONES G, ENGLAR R. Advances in pneumatic controlled high lift systems through pulsed blowing[C]//21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3411.
|
[19] |
王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37-48.
WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37-48 (in Chinese).
|
[20] |
WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. doi: 10.2514/1.J056787
|
[21] |
SWANSON R C, RUMSEY C L. Computation of circulation control airfoil flows[J]. Computers and Fluids, 2009, 38(10): 1925-1942. doi: 10.1016/j.compfluid.2009.05.002
|
[22] |
SWANSON R C, RUMSEY C L, ANDERS S G. Progress towards computational method for circulation control airfoils[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 14527-14553.
|
[23] |
LIU Y, SANKAR L, ENGLAR R, et al. Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control wing airfoil[C]//39th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001: 704.
|
[24] |
LEFEBVRE A, DANO B, BARTOW W B, et al. Performance and energy expenditure of coflow jet airfoil with variation of Mach number[J]. Journal of Aircraft, 2016, 53(6): 1757-1767. doi: 10.2514/1.C033113
|
[25] |
叶坤, 叶正寅, 武洁, 等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报, 2018, 36(3): 518-528.
YE K, YE Z Y, WU J, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528(in Chinese).
|
[1] | LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839 |
[2] | ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341. |
[3] | YANG G Y,ZHANG Y,HU L X,et al. Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2601-2618 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0652. |
[4] | LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693. |
[5] | LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813. |
[6] | CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627. |
[7] | ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790. |
[8] | GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683. |
[9] | ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609. |
[10] | HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223. |
[11] | ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710 |
[12] | JIANG Fei-hong, LIU Zhen-bao, XUE Yuan, KONG Man-zhao, ZHAO Tian. A Real-time Estimation Method for Stall Angle of Attack of Iced Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0420 |
[13] | XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494. |
[14] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[15] | HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335. |
[16] | PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152. |
[17] | ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154 |
[18] | GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081 |
[19] | WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039 |
[20] | WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140 |