Citation: | QIU Xiaoqi, GAO Changsheng, JING Wuxinget al. Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573(in Chinese) |
Mass-actuated UAVs have the advantages of higher aerodynamic efficiency, better stealth performance and simpler wing structure. This paper proposes a single-slider mass-actuated UAV layout scheme with smaller time delay and simpler structure, and analyzes the influence of the slider parameters on the dynamical characteristics of the UAV. On this basis, the ideal installation position of the slider is given, and the change of the control efficiency of the mass-actuated scheme with the speed is studied. Aimed at the characteristics of strong coupling and nonlinearity of the mass-actuated UAV, an active disturbance rejection controller (ADRC) is designed based on the particle swarm optimization algorithm (PSO). The expanded state observer estimates the total disturbance term including coupling and parameter perturbation, and performs dynamical compensation at the same time. The simulation results confirm that the designed controller has good robustness and effectiveness.
[1] |
ERTURK S A, DASKIRAN O, DOGAN A. Trim analysis of a moving-mass actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012.
|
[2] |
EL-GOHARY A I, TAWFIK T S. Optimal control of the rotational motion of a rigid body using moving masses[J]. Applied Mathematics and Computation, 2004, 153(2): 453-465. doi: 10.1016/S0096-3003(03)00645-3
|
[3] |
HE L, CHEN X, KUMAR K D, et al. A novel three-axis attitude stabilization method using in-plane internal mass-shifting[J]. Aerospace Science and Technology, 2019, 92: 489-500. doi: 10.1016/j.ast.2019.06.019
|
[4] |
HUANG H, ZHOU J. Solar sailing CubeSat attitude control method with satellite as moving mass[J]. Acta Astronautica, 2019, 159: 331-341. doi: 10.1016/j.actaastro.2019.03.077
|
[5] |
JUNG W, MAZZOLENI A P, CHUNG J. Dynamic analysis of a tethered satellite system with a moving mass[J]. Nonlinear Dynamics, 2014, 75(1-2): 267-281. doi: 10.1007/s11071-013-1064-8
|
[6] |
WOOLSEY C A, LEONARD N E. Stabilizing underwater vehicle motion using internal rotors[J]. Automatica, 2002, 38(12): 2053-2062. doi: 10.1016/S0005-1098(02)00136-X
|
[7] |
LI B, SU T C. Heading autopilot of autonomous underwater vehicles with internal moving mass[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(2): 021003. doi: 10.1115/1.4034727
|
[8] |
LI Q, XIE S, LUO J, et al. Pitch reduction system design and control for an underwater vehicle[C]//IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2014: 14547083.
|
[9] |
WOOLSEY C A, LEONARD N E. Moving mass control for underwater vehicles[C]//Proceedings of the 2002 American Control Conference. Piscataway: IEEE Press, 2002: 7426172.
|
[10] |
LI J, GAO C, FENG T, et al. Novel moving mass flight vehicle and its equivalent experiment[J]. Journal of Dynamic Systems Measurement and Control, 2018, 140(11): 111010. doi: 10.1115/1.4040326
|
[11] |
LI J, GAO C, JING W, et al. Dynamic analysis and control of novel moving mass flight vehicle[J]. Acta Astronautica, 2017, 131: 36-44. doi: 10.1016/j.actaastro.2016.11.023
|
[12] |
PETSOPOULOS T, REGAN F, BARLOW J. A moving-mass roll control system for a fixed-trim re-entry vehicle[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994.
|
[13] |
ROBINETT R D, STURGIS B R, KERR S A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1064-1070. doi: 10.2514/3.21746
|
[14] |
ROGERS J, COSTELLO M. Control authority of a projectile equipped with a controllable internal translating mass[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1323-1333. doi: 10.2514/1.33961
|
[15] |
CALHOUN P, QUEEN E. Entry vehicle control system design for the mars smart lander[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002.
|
[16] |
陈丽, 周革, 段登平. 平流层飞艇变质心姿态运动仿真[J]. 系统仿真学报, 2012, 24(12): 2434-2438. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201212006.htm
CHEN L, ZHOU G, DUAN D P. Simulation of moving-mass control of stratospheric airship[J]. Journal of System Simulation, 2012, 24(12): 2434-2438(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201212006.htm
|
[17] |
HAUS T, ORSAG M, BOGDAN S, et al. Design considerations for a large quadrotor with moving mass control[C]//2016 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2016: 16123851.
|
[18] |
HAUS T, PRKUT N, BOROVINA K, et al. A novel concept of attitude control for large multirotor-UAVs based on moving mass control[C]//2016 24th Mediterranean Conference on Control and Automation. Piscataway: IEEE Press, 2016: 16212617.
|
[19] |
DOGAN A, ERTURK S A. Trimming mass-actuated airplane in turns with zero side slip angle[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014.
|
[20] |
ERTURK S A, DOGAN A. Trim analysis of a moving-mass actuated airplane in steady turn[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
|
[21] |
ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in cruise and steady-state turn[J]. Journal of Aircraft, 2017, 54(4): 1587-1594. doi: 10.2514/1.C034200
|
[22] |
ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in steady-state climb and descent[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017.
|
[23] |
ERTURK S A, DOGAN A. Propeller torque effect on cruise trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015.
|
[24] |
ERTURK S A, DOGAN A. Propeller torque effect on steady-state turn trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
|
[25] |
VENGATE S R, ERTURK S A, DOGAN A. Development and flight test of moving-mass actuated unmanned aerial vehicle[C]// AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
|
[26] |
ERTURK S A, DOGAN A. Dynamic simulation and control of mass-actuated airplane[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8): 1939-1953. doi: 10.2514/1.G002658
|
[27] |
BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton: Princeton University Press, 2012.
|
[28] |
韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. doi: 10.3969/j.issn.1671-7848.2002.03.003
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18(in Chinese). doi: 10.3969/j.issn.1671-7848.2002.03.003
|
[29] |
VAN DEN BERGH F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. doi: 10.1016/j.ins.2005.02.003
|