Huang Haijun, Ouyang Lianqun, Liu Tianlianget al. Upper bounds of efficiency loss for user equilibrium behavior in traffic networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1215-1219. (in Chinese)
Citation: QIU Xiaoqi, GAO Changsheng, JING Wuxinget al. Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573(in Chinese)

Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV

doi: 10.13700/j.bh.1001-5965.2020.0573
Funds:

National Natural Science Foundation of China 11572097

More Information
  • Corresponding author: GAO Changsheng, E-mail: gaocs@hit.edu.cn
  • Received Date: 09 Oct 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Mar 2022
  • Mass-actuated UAVs have the advantages of higher aerodynamic efficiency, better stealth performance and simpler wing structure. This paper proposes a single-slider mass-actuated UAV layout scheme with smaller time delay and simpler structure, and analyzes the influence of the slider parameters on the dynamical characteristics of the UAV. On this basis, the ideal installation position of the slider is given, and the change of the control efficiency of the mass-actuated scheme with the speed is studied. Aimed at the characteristics of strong coupling and nonlinearity of the mass-actuated UAV, an active disturbance rejection controller (ADRC) is designed based on the particle swarm optimization algorithm (PSO). The expanded state observer estimates the total disturbance term including coupling and parameter perturbation, and performs dynamical compensation at the same time. The simulation results confirm that the designed controller has good robustness and effectiveness.

     

  • [1]
    ERTURK S A, DASKIRAN O, DOGAN A. Trim analysis of a moving-mass actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012.
    [2]
    EL-GOHARY A I, TAWFIK T S. Optimal control of the rotational motion of a rigid body using moving masses[J]. Applied Mathematics and Computation, 2004, 153(2): 453-465. doi: 10.1016/S0096-3003(03)00645-3
    [3]
    HE L, CHEN X, KUMAR K D, et al. A novel three-axis attitude stabilization method using in-plane internal mass-shifting[J]. Aerospace Science and Technology, 2019, 92: 489-500. doi: 10.1016/j.ast.2019.06.019
    [4]
    HUANG H, ZHOU J. Solar sailing CubeSat attitude control method with satellite as moving mass[J]. Acta Astronautica, 2019, 159: 331-341. doi: 10.1016/j.actaastro.2019.03.077
    [5]
    JUNG W, MAZZOLENI A P, CHUNG J. Dynamic analysis of a tethered satellite system with a moving mass[J]. Nonlinear Dynamics, 2014, 75(1-2): 267-281. doi: 10.1007/s11071-013-1064-8
    [6]
    WOOLSEY C A, LEONARD N E. Stabilizing underwater vehicle motion using internal rotors[J]. Automatica, 2002, 38(12): 2053-2062. doi: 10.1016/S0005-1098(02)00136-X
    [7]
    LI B, SU T C. Heading autopilot of autonomous underwater vehicles with internal moving mass[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(2): 021003. doi: 10.1115/1.4034727
    [8]
    LI Q, XIE S, LUO J, et al. Pitch reduction system design and control for an underwater vehicle[C]//IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2014: 14547083.
    [9]
    WOOLSEY C A, LEONARD N E. Moving mass control for underwater vehicles[C]//Proceedings of the 2002 American Control Conference. Piscataway: IEEE Press, 2002: 7426172.
    [10]
    LI J, GAO C, FENG T, et al. Novel moving mass flight vehicle and its equivalent experiment[J]. Journal of Dynamic Systems Measurement and Control, 2018, 140(11): 111010. doi: 10.1115/1.4040326
    [11]
    LI J, GAO C, JING W, et al. Dynamic analysis and control of novel moving mass flight vehicle[J]. Acta Astronautica, 2017, 131: 36-44. doi: 10.1016/j.actaastro.2016.11.023
    [12]
    PETSOPOULOS T, REGAN F, BARLOW J. A moving-mass roll control system for a fixed-trim re-entry vehicle[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994.
    [13]
    ROBINETT R D, STURGIS B R, KERR S A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1064-1070. doi: 10.2514/3.21746
    [14]
    ROGERS J, COSTELLO M. Control authority of a projectile equipped with a controllable internal translating mass[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1323-1333. doi: 10.2514/1.33961
    [15]
    CALHOUN P, QUEEN E. Entry vehicle control system design for the mars smart lander[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002.
    [16]
    陈丽, 周革, 段登平. 平流层飞艇变质心姿态运动仿真[J]. 系统仿真学报, 2012, 24(12): 2434-2438.

    CHEN L, ZHOU G, DUAN D P. Simulation of moving-mass control of stratospheric airship[J]. Journal of System Simulation, 2012, 24(12): 2434-2438(in Chinese).
    [17]
    HAUS T, ORSAG M, BOGDAN S, et al. Design considerations for a large quadrotor with moving mass control[C]//2016 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2016: 16123851.
    [18]
    HAUS T, PRKUT N, BOROVINA K, et al. A novel concept of attitude control for large multirotor-UAVs based on moving mass control[C]//2016 24th Mediterranean Conference on Control and Automation. Piscataway: IEEE Press, 2016: 16212617.
    [19]
    DOGAN A, ERTURK S A. Trimming mass-actuated airplane in turns with zero side slip angle[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014.
    [20]
    ERTURK S A, DOGAN A. Trim analysis of a moving-mass actuated airplane in steady turn[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
    [21]
    ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in cruise and steady-state turn[J]. Journal of Aircraft, 2017, 54(4): 1587-1594. doi: 10.2514/1.C034200
    [22]
    ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in steady-state climb and descent[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017.
    [23]
    ERTURK S A, DOGAN A. Propeller torque effect on cruise trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015.
    [24]
    ERTURK S A, DOGAN A. Propeller torque effect on steady-state turn trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
    [25]
    VENGATE S R, ERTURK S A, DOGAN A. Development and flight test of moving-mass actuated unmanned aerial vehicle[C]// AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
    [26]
    ERTURK S A, DOGAN A. Dynamic simulation and control of mass-actuated airplane[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8): 1939-1953. doi: 10.2514/1.G002658
    [27]
    BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton: Princeton University Press, 2012.
    [28]
    韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. doi: 10.3969/j.issn.1671-7848.2002.03.003

    HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18(in Chinese). doi: 10.3969/j.issn.1671-7848.2002.03.003
    [29]
    VAN DEN BERGH F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. doi: 10.1016/j.ins.2005.02.003
  • Relative Articles

    [1]CUI Zhen, ZHAO Zhigang, SU Cheng, MENG Jiadong, ZHAO Xiangtang, CHAI Wei. Dynamics and Dynamic Stability Analysis of Rope Traction Upper Limb Rehabilitation Robot[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0827
    [2]XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0536.
    [3]ZHOU D P,LI H Q,WANG Y G,et al. Aircraft system identification algorithm based on generalized equivalent model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1454-1462 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0507.
    [4]DING Cong, LI Xiaoyu, WANG Wentao, ZHANG Qi, ZHANG Xiaobei. Unstable approach detection of aircraft based on modified VAE-WGAN[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0365
    [5]LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0274.
    [6]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [7]SHE W Q,LIU Y B,CHEN B Y. Altitude control strategy for high-aspect-ratio wings with active morphing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1746-1752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0612.
    [8]XING Z W,KAN B,ZHU S J,et al. A dynamic model of arriving passengers based on dual value driving[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3645-3653 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1019.
    [9]DUAN Leqiang, LI Lei, WANG Weijie, ZHU Hongye, PANG Weikun, REN Yuan. Dynamics Modeling and Active disturbance rejection control of Magnetically Suspended Universally Stabilized Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0065
    [10]JIANG Y H,GUO T,GONG Q,et al. Analysis and modeling method of civil aircraft emergency scenario[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):839-849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0339.
    [11]CHEN P X,WU C C,NI Z Y. Dynamic modelling and simulation of a tethered-net in space[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2951-2962 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0747.
    [12]CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0708.
    [13]XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0045.
    [14]FENG W C,ZHANG T,LI W. Experimental study on adverse attitude emergency evacuation of civil aircraft after crash landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1553-1562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0483.
    [15]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [16]WU X J,HAN X R,WU X L,et al. Prescribed performance control for quadrotor UAV with unknown kinetic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2587-2595 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0714.
    [17]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [18]SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0510.
    [19]WU Tailong, WANG Yue. Orbital dynamics of rings of small bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1287-1296. doi: 10.13700/j.bh.1001-5965.2021.0003
    [20]PENG Cheng, SUN Liguo, WANG Yanyang, TAN Wenqian, XIAO Feng. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130
  • Cited by

    Periodical cited type(3)

    1. 艾梦琪,郭保,赵彦. 双机身布局验证机气动特性及横航向飞行品质分析. 飞行力学. 2023(06): 10-15 .
    2. 陈奎,闫稳,王凌伟,王建生. 一种新型高隐身低阻尼控制系统设计与仿真. 计算机仿真. 2020(06): 30-35 .
    3. 陈俊平,王立新. 低能量状态对飞行安全的危害及改出方法. 航空学报. 2017(08): 66-76 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(611) PDF downloads(270) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return