Citation: | WANG Feng, YANG Dongkai, ZHANG Bo, et al. Modeling and simulation of spaceborne GNSS ocean-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 419-429. doi: 10.13700/j.bh.1001-5965.2020.0575(in Chinese) |
The modeling and simulation of spaceborne GNSS reflectometry is important for the research of forward and inverse problem of GNSS reflectometry, and the evaluation of algorithm and performance in the receiver. This paper firstly develops the layered structure of modeling spaceborne GNSS reflectometry from the perspectives of geometry, signals and related power. Secondly, the bistatic geometry of spaceborne GNSS reflectometry is discussed in detail. Thirdly, the sea spectrum is developed by linearly combining wind-, swell- and rain-driven sea spectrum, and further bistatic scattering coefficient is computed. Fourthly, based on the assumption that scattered signals from each scattering unit are independent, an ocean-reflected GNSS signal model is derived. Finally, the ocean-reflected GNSS signals and delay-Doppler maps are produced by simulation, and are analytically compared to the measured correlation power from UK TDS-1. The results show the simulated delay-Doppler maps obtained through end-to-end simulating correlation power and through processing simulated GNSS signal have the cosine similarity of 0.97 and 0.94 with the measured delay-Doppler maps from UK TDS-1 respectively, so that proposed approach could be used to simulate correctly reflected GNSS signals and delay-Doppler maps through comparing the simulated delay-Doppler maps and actual ones received from UK TDS-1. In addition, the simulation analysis of the influence of swell and rain on the reflected GNSS signals shows that swell mainly impacts reflected GNSS signal for low wind speed and does not impact it for high wind speed, and rain has no significant influence on the reflected GNSS signal.
[1] |
LI W, CARDELLACH E, FABRA F, et al. Assessment of spaceborne GNSS-R ocean altimetry performance using CYGNSS mission raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 238-250. doi: 10.1109/TGRS.2019.2936108
|
[2] |
RODRIGUEZ-ALVAREZ N, AKOS D M, ZAVOROTNY V U, et al. Airborne GNSS-R wind retrievals using delay-Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 626-641. doi: 10.1109/TGRS.2012.2196437
|
[3] |
YAN Q, HUANG W. Sea ice remote sensing using GNSS-R: A review[J]. Remote Sensing, 2019, 11(21): 2565. doi: 10.3390/rs11212565
|
[4] |
WU X, DONG Z, JIN S, et al. First measurement of soil freeze/thaw cycles in the tibetan plateau using CYGNSS GNSS-R data[J]. Remote Sensing, 2020, 12(15): 2361. doi: 10.3390/rs12152361
|
[5] |
FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission[J]. Geophysical Research Letters, 2015, 42(13): 5435-5441. doi: 10.1002/2015GL064204
|
[6] |
RUF C S, ATLAS R, CHANG P S, et al. New ocean winds satellite mission to probe hurricanes and tropical convection[J]. Bulletin of the American Meteorological Society, 2016, 97(3): 385-395. doi: 10.1175/BAMS-D-14-00218.1
|
[7] |
JING C, NIU X, DUAN C, et al. Sea surface wind speed retrieval from the first Chinese GNSS-R mission: Technique and preliminary results[J]. Remote Sensing, 2019, 11(24): 3013. doi: 10.3390/rs11243013
|
[8] |
PARK H, CAMPS A, VALENCIA E, et al. Retracking considerations in spaceborne GNSS-raltimetry[J]. GPS Solutions, 2012, 16(4): 507-518. doi: 10.1007/s10291-011-0251-7
|
[9] |
PARK H, MARCHAN-HERNANDEZ J F, RODRIGUEZ-ALVAREZ N, et al. End-to-end simulator for global navigation satellite system reflectometry space mission[C]//2010 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2010: 4294-4297.
|
[10] |
HOOVER K E, MECIKALSKI J R, LANG T J, et al. Use of an end-to-end-simulator to analyze CYGNSS[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(1): 35-55. doi: 10.1175/JTECH-D-17-0036.1
|
[11] |
BAI W, XIA J, ZHAO D, et al. GREEPS: An GNSS-R end-to-end performance simulator[C]//2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2016: 16444628.
|
[12] |
ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. doi: 10.1109/36.841977
|
[13] |
WU S C, MEEHAN T, YOUNG L. The potential use of GPS signals as ocean altimetry observable[C]//Proceedings of the National Technical Meeting of the Institute of Navigation, 1997.
|
[14] |
WAGNER C, KLOKOCNIK J. The value of ocean reflections of GPS signals to enhance satellite altimetry: Data distribution and error analysis[J]. Journal of Geodesy, 2003, 77(3-4): 128-138. doi: 10.1007/s00190-002-0307-0
|
[15] |
GLEASON S, GEBRE-EGZIABHER D. GNSS应用与方法[M]. 杨东凯, 樊江滨, 译. 北京: 电子工业出版社, 2011.
GLEASON S, GEBRE-EGZIABHER D. GNSS application and method[M]. YANG D K, FAN J B, translated. Beijing: Electronics Industry Publishing House, 2011(in Chinese).
|
[16] |
张波, 王峰, 杨东凯. 基于线段二分法的GNSS-R镜面反射点估计算法[J]. 全球定位系统, 2013, 38(5): 11-16. doi: 10.3969/j.issn.1008-9268.2013.05.003
ZHANG B, WANG F, YANG D K. The algorithm for the determination of the GNSS-R specular point based on the dichotomy of the line segment[J]. GNSS World of China, 2013, 38(5): 11-16(in Chinese). doi: 10.3969/j.issn.1008-9268.2013.05.003
|
[17] |
VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1959-1968. doi: 10.1109/TGRS.2017.2771253
|
[18] |
LEADER J C. Incoherent backscatter from rough surfaces: The two-scale model reexamined[J]. Radio Science, 1978, 13(3): 441-457. doi: 10.1029/RS013i003p00441
|
[19] |
ROBERTSON J S. Wave scattering from rough surfaces[M]. Berlin: Springer, 1999: 217-274.
|
[20] |
BRONWN G S. Backscattering from a Gaussian-distributed perfectly conducting rough surface[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(3): 472-482. doi: 10.1109/TAP.1978.1141854
|
[21] |
ELFOUHAILY T, CHAPRON B, KATSAROS K, et al. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research Oceans, 1997, 102(C7): 15781-15796. doi: 10.1029/97JC00467
|
[22] |
BLIVEN L F, SOBIESKI P W, CRAEYE C. Rain generated ring-waves: Measurements and modelling for remote sensing[J]. International Journal of Remote Sensing, 1997, 18(1): 221-228. doi: 10.1080/014311697219385
|
[23] |
DURDEN S L, VESECKY J F. A physical radar cross-section model for a wind-driven sea with swell[J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 445-451. doi: 10.1109/JOE.1985.1145133
|
[24] |
UMWIN M, JALES P, TYE J, et al. Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploitation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4525-4539. doi: 10.1109/JSTARS.2016.2603846
|
[25] |
SOISUVARN S, JELENAK Z, SAID F, et al. The GNSS reflectometry response to the ocean surface winds and waves[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4678-4699. doi: 10.1109/JSTARS.2016.2602703
|
[26] |
高洪兴, 杨东凯, 张波, 等. 基于GNSS卫星反射信号的海冰厚度探测[J]. 电子与信息学报, 2017, 39(5): 1096-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201705012.htm
GAO H X, YANG D K, ZHNAG B, et al. Remote sensing of sea ice thickness with GNSS reflected signal[J]. Journal of Electronics and Information Technology, 2017, 39(5): 1096-1100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201705012.htm
|
[27] |
PARK J, JOHNSON J T. A study of wind direction effects on sea surface specular scattering for GNSS-R applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4677-4685. doi: 10.1109/JSTARS.2017.2719405
|
[28] |
WANG F, YANG D, YANG L. Feasibility of wind direction observation using low-altitude global navigation satellite system-reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 11(12): 5063-5075.
|
[29] |
ZHANG G, YANG D, YU Y, et al. Wind direction retrieval using spaceborne GNSS-R in nonspecular geometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 649-658. doi: 10.1109/JSTARS.2020.2970106
|
[30] |
HAJJ G A, ZUFFADA C. Theoretical description of a bistatic system for ocean altimetry using the GPS signal[J]. Radio Science, 2003, 38(5): 1-19.
|
[31] |
GLEASON S. Space-based GNSS scatterometry: Ocean wind sensing using an empirically calibrated model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4853-4863. doi: 10.1109/TGRS.2012.2230401
|
[32] |
GLEASON S, GOMMENGINGER C, CROMWELL D. Fading statistics and sensing accuracy of ocean scattered GNSS and altimetry signals[J]. Advances in Space Research, 2010, 46(2): 208-220. doi: 10.1016/j.asr.2010.03.023
|
[33] |
谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.
XIE G. Principles of GPS and receiver design[M]. Beijing: Electronics Industry Publishing House, 2009(in Chinese).
|