Citation: | LI Chaoyue, FENG Shiyu, XU Lei, et al. Measurement of mass diffusion coefficient of CO2 in RP5 jet fuel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 412-418. doi: 10.13700/j.bh.1001-5965.2020.0581(in Chinese) |
The experimental platform for measuring the gas-liquid mass diffusion coefficient is set up based on the method of digital holographic interferometry. The hollow stainless steel constant temperature diffusion tank is designed and processed and the digital image processing is coded by self-programming on MATLAB. The correctness of the experimental system is verified by measuring the mass diffusion coefficient of 0.33 mol/L KCl in water at 298.15 K. Then the mass diffusion coefficient of CO2 in RP5 jet fuel is measured in the temperature range of 278.15 K to 343.15 K under normal pressure. The mass diffusion coefficient increases with the increase of temperature. The mass diffusion coefficient at different temperatures can be fitted by Arrhenius equation model, and the relative difference between theoretical model calculation and experimental measurement results is less than 9.51%. Therefore, in practical engineering applications, the mass diffusion coefficient of CO2 in RP5 jet fuel can be accurately predicted according to the Arrhenius equation, and the experimental results provide data support for the optimal design of tank inerting system.
[1] |
HARRIS P A, RATCLIFFE N M. Dimensional modelling of the fuel outgassing phenomenon: Improving flammability assessment of aircraft fuel tanks[J]. The Aeronautical Journal, 2011, 115(1172): 605-614. doi: 10.1017/S0001924000006291
|
[2] |
SHAO L, LIU W H, LI C Y, et al. Experimental comparison between aircraft fuel tank inerting processes using NEA and MIG[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1515-1524. doi: 10.1016/j.cja.2018.04.016
|
[3] |
PEI Y, SHI B. Method for analyzing the effect of projectile impact on aircraft fuel tank inerting for survivability design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2345-2355. doi: 10.1177/0954410015623573
|
[4] |
SUMMER S M. Limiting oxygen concentration required to inert jet fuel vapors existing at reduced fuel tank pressures: DOT/FAA/AR-TN02/79[R]. Virginia: FAA, 2003.
|
[5] |
BURNS M, CAVAGE W M, MORRISON R, et al. Evaluation of fuel tank flammability and the FAA inerting system on the NASA 747 SCA: DOT/FAA/AR-04/41[R]. Virginia: FAA, 2004.
|
[6] |
LI C Y, FENG S Y, SHAO L, et al. Experimental study of the solubility and diffusivity of CO2 and O2 in RP-3 jet fuel[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(2): 216-224. doi: 10.1108/AEAT-05-2017-0133
|
[7] |
BURNS M, CAVAGE W M, HILL R, et al. Flight-testing of the FAA onboard inert gas generation system on an airbus A320: DOT/FAA/AR-03/58[R]. Virginia: FAA, 2004.
|
[8] |
CAVAGE W, BOWMAN T. Modeling in-flight inert gas distribution in a 747 center wing fuel tank[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 1-13.
|
[9] |
冯诗愚, 邵垒, 李超越, 等. 航空燃油类型对催化惰化系统性能的影响[J]. 航空学报, 2016, 37(6): 1819-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm
FENG S Y, SHAO L, LI C Y, et al. Performance of catalytic inerting system affected by various aviation jet fuels[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1819-1826 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm
|
[10] |
CLARIS C. Inert gas generator and aircraft fuel tank inerting system implementing said inert gas generator: US2017/0239615A1[P]. 2017-08-24.
|
[11] |
HAGH B F, ZHENG D, JOHNSON R W, et al. Aircraft systems and methods with integrated tank inerting and power generation: US9731834B2[P]. 2017-08-15.
|
[12] |
KEIM M, KALLO J, FRIEDRICH K A, et al. Multifunctional fuel cell system in an aircraft environment: An investigation focusing on fuel tank inerting and water generation[J]. Aerospace Science and Technology, 2013, 29(1): 330-338. doi: 10.1016/j.ast.2013.04.004
|
[13] |
RENOUARD-VALLET G N L, SABALLUS M, SCHMITHALS G, et al. Improving the environmental impact of civil aircraft by fuel cell technology: Concepts and technological progress[J]. Energy & Environmental Science, 2010, 3(10): 1458-1468.
|
[14] |
ASTM. Standard test method for estimation of solubility of gases in petroleum liquids: D 2779-92[S]. Philadelphia: ASTM International, 2002: 1-5.
|
[15] |
李超越, 冯诗愚, 邵垒, 等. 二氧化碳在RP3航空燃油中溶解度实验测定[J]. 航空动力学报, 2017, 32(4): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704023.htm
LI C Y, FENG S Y, SHAO L, et al. Experiment measurement of solubility of carbon dioxide in RP3 jet fuel[J]. Journal of Aerospace Power, 2017, 32(4): 949-954(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704023.htm
|
[16] |
ZHANG Y P, HYNDMAN C L, MAINI B B. Measurement of gas diffusivity in heavy oils[J]. Journal of Petroleum Science and Engineering, 2000, 25(1-2): 37-47. doi: 10.1016/S0920-4105(99)00031-5
|
[17] |
AVGOUSTINIATIOS E S, DIONNE K E, WILSON D F, et al. Measurements of the effective diffusion coefficient of oxygen in pancreatic islets[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6157-6163.
|
[18] |
SMITH M J, FLOWERS T H, COWLING M J, et al. Method for the measurement of the diffusion coefficient of benzalkonium chloride[J]. Water Research, 2002, 36(6): 1423-1428. doi: 10.1016/S0043-1354(01)00356-6
|
[19] |
赵长伟, 马沛生, 宋小溪. 脂肪族氨基酸在水溶液中扩散系数的测定与关联[J]. 化工学报, 2003, 54(12): 1689-1695. doi: 10.3321/j.issn:0438-1157.2003.12.006
ZHAO C W, MA P S, SONG X X. Measurement and correlation of diffusion coefficients for amino acids in aqueous solutions[J]. Journal of Chemical Industry and Engineering, 2003, 54(12): 1689-1695(in Chinese). doi: 10.3321/j.issn:0438-1157.2003.12.006
|
[20] |
MATSUNAGA N, HORI M, NAGASHIMA A. Measurement of mutual diffusion coefficients of gases by the Taylor method: Measurements on H2-Air, H2-N2, and H2-O2 systems[J]. Heat Transfer—Asian Research, 2002, 31(3): 182-193.
|
[21] |
RODRIGO M M, ESTESO M A, VERISSIMO L M P, et al. Diffusion and structural behaviour of the dl-2-aminobutyric acid[J]. The Journal of Chemical Thermodynamics, 2019, 135: 60-67. doi: 10.1016/j.jct.2019.03.009
|
[22] |
李超越, 冯诗愚, 邵垒, 等. 二氧化碳在RP3航空燃油中扩散系数实验[J]. 航空动力学报, 2017, 32(11): 2604-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201711006.htm
LI C Y, FENG S Y, SHAO L, et al. Experiment on diffusion coefficient of carbon dioxide in RP3 aviation fuel[J]. Journal of Aerospace Power, 2017, 32(11): 2604-2608(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201711006.htm
|
[23] |
BEHZADFAR E, HATZIKIRIAKOS S G. Diffusivity of CO2 in bitumen: Pressure-decay measurements coupled with rheometry[J]. Energy & Fuels, 2014, 28(2): 1304-1311.
|
[24] |
ZHANG S, HE M, ZHANG Y, et al. Study of the measurement for the diffusion coefficient by digital holographic interferometry[J]. Applied Optics, 2015, 54(31): 9127-9135. doi: 10.1364/AO.54.009127
|
[25] |
AMBROSINI D, PAOLETTI D, RASHIDNIA N. Overview of diffusion measurements by optical techniques[J]. Optics and Lasers in Engineering, 2008, 46(12): 852-864. doi: 10.1016/j.optlaseng.2008.06.008
|
[26] |
LI C Y, LIU W H, PENG X T, et al. Measurement of mass diffusion coefficients of O2 in aviation fuel through digital holographic interferometry[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1184-1189. doi: 10.1016/j.cja.2019.01.012
|
[27] |
GUO Y, HE M G, ZHONG Q, et al. Mass diffusion coefficients of dimethyl carbonate in heptane and in air at T=(278.15 to 338.15) K[J]. Journal of Chemical and Engineering Data, 2008, 53(12): 2861-2864. doi: 10.1021/je800606r
|
[28] |
GOSTING L J. A study of the diffusion of potassium chloride in water at 25 with the gouy interference method[J]. Journal of the American Chemical Society, 1950, 10(72): 4418-4422.
|