Xu Libo, Gao Ge. Computation of shock wave/boundary-layer interactions with GAO-YONG turbulence equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1136-1140. (in Chinese)
Citation: ZHOU Changlin, WANG Chunyang, GONG Jian, et al. SMSP jamming countermeasure method based on maximum entropy method and genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 447-453. doi: 10.13700/j.bh.1001-5965.2020.0584(in Chinese)

SMSP jamming countermeasure method based on maximum entropy method and genetic algorithm

doi: 10.13700/j.bh.1001-5965.2020.0584
Funds:

China Postdoctoral Science Foundation 2019M662257

Aeronautical Science Foundation of China 201901096002

More Information
  • Corresponding author: WANG Chunyang, E-mail: wangcy_kgd@163.com
  • Received Date: 15 Oct 2020
  • Accepted Date: 15 Jan 2021
  • Publish Date: 20 Mar 2022
  • Linear frequency modulation (LFM) signal is a commonly used transmission signal of modern radar, which can effectively improve the detection performance of radar. However, when smeared spectrum (SMSP) jamming is applied to the main lobe self-defense, the intensity of the jamming signal is much higher than the target echo signal, and it can cover the target echo signal, which is an effective jamming pattern against LFM signal. In this paper, the difference in time-frequency characteristics of the jamming signal and the target echo signal is used to highlight the difference in time-frequency characteristics through the generalized S transform (GST), and then the maximum entropy method and genetic algorithm (GA) are used to obtain the segmentation threshold of the time-frequency filter. The purpose of jamming suppression is achieved through the constructed time-frequency filter. The simulation results show that when the jamming-to-signal ratio (JSR) is greater than 10 dB and the signal-to-noise ratio (SNR) is greater than 0 dB, it has a better jamming suppression effect, and the maximum signal-to-jamming-plus-noise ratio (SJNR) gain is close to 25 dB.

     

  • [1]
    SCHLEHER D C. Electronic warfare in the information age[M]. Boston: Artech House, 2000: 198-199.
    [2]
    SPARROW M J, CIKALO J. ECM techniques to counter pulse compression radar: US, 7081846[P]. 2006-07-25.
    [3]
    李飞, 李国林, 粘朋雷. 基于盲源分离的雷达信号欺骗干扰抑制[J]. 海军航空工程学院学报, 2015, 30(5): 424-428.

    LI F, LI G L, NIAN P L. Radar signal deception jamming suppressing based on blind source separation[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30(5): 424-428(in Chinese).
    [4]
    尹洪伟, 李国林, 路翠华. 一种基于复值盲分离的欺骗干扰抑制算法[J]. 上海交通大学学报, 2015, 49(10): 1564-1569.

    YIN H W, LI G L, LU C H. An algorithm of deception jamming suppression based on complex-value blind source separation[J] Journal of Shanghai Jiaotong University, 2015, 49(10): 1564-1569(in Chinese).
    [5]
    DING L M, LI R F, DAI L Y, et al. Discrimination and identification between mainlobe repeater jamming and target echo via sparse recovery[J]. IET Radar, Sonar and Navigation, 2017, 11(2): 235-242. doi: 10.1049/iet-rsn.2016.0109
    [6]
    卢云龙, 李明, 曹润清, 等. 联合时频分布和压缩感知对抗频谱弥散干扰[J]. 电子与信息学报, 2016, 38(12): 3275-3281.

    LU Y L, LI M, CAO R Q, et al. Jointing time-frequency distribution and compressed sensing for countering smeared spectrum jamming[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3275-3281(in Chinese).
    [7]
    卢云龙, 李明, 陈洪猛, 等. 基于熵特征的DRFM有源欺骗干扰CFAR检测[J]. 系统工程与电子技术, 2016, 38(4): 732-738.

    LU Y L, LI M, CHEN H M, et, al. CFAR detection of DRFM deception jamming based on entropy feature[J]. Systems Engineering and Electronics Technology, 2016, 38(4): 732-738(in Chinese).
    [8]
    赵源. 相控阵雷达及组网抗有源假目标与虚假航迹方法研究[D]. 成都: 电子科技大学, 2019.

    ZHAO Y. Research on phased array radar and its network ECCM against active false target and phantom track jamming[D]. Chengdu: University of Electronic Science and Technology, 2019(in Chinese).
    [9]
    赵杨, 尚朝轩, 韩壮志, 等. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰[J]. 电子与信息学报, 2019, 41(5): 1047-1054.

    ZHAO Y, SHANG C X, HAN Z Z, et al. Fractional Fourier transform and compressed sensing adaptive countering smeared spectrum jamming[J]. Journal of Electronics and Information Technology, 2019, 41(5): 1047-1054(in Chinese).
    [10]
    张亮, 王国宏, 李思文. 线性正则域抑制频谱弥散干扰方法[J]. 信号处理, 2020, 36(3): 328-336.

    ZHANG L, WANG G H, LI S W. SMSP jamming suppression methods in linear canonical domain[J]. Journal of Signal Processing, 2020, 36(3): 328-336(in Chinese).
    [11]
    原慧, 王春阳, 安磊, 等. 基于信号重构的频谱弥散干扰抑制方法[J]. 系统工程与电子技术, 2017, 39(5): 960-967.

    YUAN H, WANG C Y, AN L, et al. Smeared spectrum jamming suppression method based on signal reconstruction[J]. Systems Engineering and Electronics Technology, 2017, 39(5): 960-967(in Chinese).
    [12]
    WU C Z, CHEN B X, YANG M L, et al. A study on parameter estimation and suppression for smeared spectrum jamming based on short-time Fourier transform[J]. Journal on Wireless Communications and Networking, 2020, 115(1): 1-16.
    [13]
    周长霖, 王春阳, 宫健, 等. 基于干扰重构和盲源分离的混合极化抗SMSP干扰[J]. 北京航空航天大学学报, 2021, 47(9): 1841-1848. doi: 10.13700/j.bh.1001-5965.2020.0326

    ZHOU C L, WANG C Y, GONG J, et al. Hybrid polarization anti-SMSP jamming based on jamming reconstruction and blind source separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1841-1848(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0326
    [14]
    LI X, WANG C Y, YUAN H, et al. Smeared spectrum jamming suppression based on time unit analysis and polarization cancellation[J]. Cluster Computing, 2019, 22(6): 14367-14375.
    [15]
    HOLLAND J H. Genetic algorithms and the optimal allocation of trials[J]. SIAM Journal on Computing, 1973, 2(2): 88-105. doi: 10.1137/0202009
    [16]
    YANG W, CAI L L, WU F. Image segmentation based on gray level and local relative entropy two dimensional histogram[J]. PLoS One, 2020, 15(3): e0229651. doi: 10.1371/journal.pone.0229651
    [17]
    STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. doi: 10.1109/78.492555
    [18]
    姬战怀, 严胜刚. 关于"一种改进广义S变换"的讨论[J]. 石油地球物理勘探, 2015, 50(6): 1224-1230.

    JI Z H, YAN S G. Discussion on 'An improved generalized S transform'[J]. Oil Geophysical Prospecting, 2015, 50(6): 1224-1230(in Chinese).
    [19]
    鱼滨, 张善文, 郭竟. 基于MATLAB和遗传算法的图像处理[M]. 西安: 西安电子科技大学出版社, 2015: 181-184.

    YU B, ZHANG S W, GUO J. Image processing based on MATLAB and genetic algorithm[M]. Xi 'an: Xidian University Press, 2015: 181-184(in Chinese).
    [20]
    李欣, 王春阳, 原慧, 等. 基于干扰重构和峭度最大化的SMSP干扰抑制方法[J]. 北京航空航天大学学报, 2018, 44(6): 1176-1184. doi: 10.13700/j.bh.1001-5965.2017.0421

    LI X, WANG C Y, YUAN H, et al. SMSP jamming suppression method based on jamming reconstruction and kurtosis maximum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1176-1184(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0421
  • Relative Articles

    [1]LIU B,HAO X H,QIN G L,et al. Sparse classification and recognition method of fuzed targets and jamming signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):498-506 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0071.
    [2]MA Y N,WANG J,FAN G T,et al. Countermeasure effect of jamming to FSK modulation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):507-517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0007.
    [3]GONG F X,DIWU Y G. Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):380-388 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0027.
    [4]HUANG Zhijie, LIU Wei, GUO Zhiqiang. Optimization Design of LLC Resonant Converters for Efficiency and Power Density Based on Genetic Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0891
    [5]WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857.
    [6]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [7]WANG E S,WANG H,LEI H,et al. ARAIM-related fault subset optimization algorithm based on sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2066-2073 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0596.
    [8]CHANG Jiaming, LI Sulan, DUAN Xuechao, ZHANG Wei, WANG Chenyang. Anti-stochastic disturbance control of airship[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0489
    [9]HAN S C,LIU H. A large-capacity zero-watermarking algorithm for color images based on combined transform domain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2093-2103 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0009.
    [10]CUI Y P,LI Z H,ZHENG G L. Computing convex hull of a generic polygon with simulation of progressive support for an elastic line[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):216-223 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0246.
    [11]LIANG Liming, LONG Pengwei, LU Baohe, OU Yanyan, ZENG Lu. EHH-YOLOv8s: A lightweight algorithm for strip surface defect detection[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0426
    [12]CHEN Y L,DONG S J,SUN S Z,et al. Improved YOLOv5s low-light underwater biological target detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):499-507 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0322.
    [13]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [14]ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447.
    [15]SHI T,ZHUANG X B,LIN Z J,et al. Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3528-3536 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0118.
    [16]YANG B,HE Y Z,XU F,et al. Using improved genetic algorithm for software fault localization aided test case generation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2279-2288 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0524.
    [17]ZHANG H B,WANG X,XU Y H,et al. Relative entropy method in target recognition with fuzzy features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3547-3558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0237.
    [18]ZHANG Yang, QIU Dong-yuan, ZHANG Bo, CHEN Yan-feng. Comprehensive Evaluation of DC-DC Converters Based on Analytic Hierarchy Process and Entropy Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0291
    [19]ZHOU B L,LI R F,ZENG L,et al. A sparse estimation method for radar target direction with sliding-window subarray configuration in mainlobe jamming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1623-1629 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0552.
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • Cited by

    Periodical cited type(1)

    1. 周长霖,王春阳,陈赓,刘明杰. 雷达主瓣反干扰研究进展及展望. 信息对抗技术. 2024(04): 1-16 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(507) PDF downloads(152) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return