Volume 47 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
TANG Andi, HAN Tong, XU Dengwu, et al. Chaotic multi-leader whale optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1481-1494. doi: 10.13700/j.bh.1001-5965.2020.0585(in Chinese)
Citation: TANG Andi, HAN Tong, XU Dengwu, et al. Chaotic multi-leader whale optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1481-1494. doi: 10.13700/j.bh.1001-5965.2020.0585(in Chinese)

Chaotic multi-leader whale optimization algorithm

doi: 10.13700/j.bh.1001-5965.2020.0585
Funds:

Natural Science Foundation of Shaanxi Province 2020JQ-481

Natural Science Foundation of Shaanxi Province 2021JM224

Aeronautical Science Foundation of China 201951096002

More Information
  • Corresponding author: HAN Tong, E-mail: 418932433@qq.com
  • Received Date: 15 Oct 2020
  • Accepted Date: 22 Jan 2021
  • Publish Date: 20 Jul 2021
  • Aimed at the path planning problem of Unmanned Aerial Vehicle (UAV), a path planning method based on a Chaotic Multi-Leader Whale Optimization Algorithm (CML-WOA) is proposed. In the known flight environment, 3D model of flight area and a flight path cost model are established. By introducing penalty functions, the constrained 3D path planning problem is transformed into an unconstrained multi-dimensional function optimization problem, which is solved using CML-WOA to obtain the optimal flight path. To overcome the defect that the WOA is easy to fall into local optimum, this paper introduces the cubic mapping chaos operator to improve the initial population and enhance the population diversity. And the Sine Cosine Algorithm (SCA) is integrated through an adaptive framework. A multi-leader search strategy is used to effectively improve the algorithm exploitation and exploration capability. Finally, a greedy strategy is used to ensure the convergence efficiency. The proposed improved CML-WOA is tested and validated by 20 benchmark functions test and path planning simulation experiments. The results show that the algorithm has significantly improved performance compared to other algorithms, with strong local optimal avoidance capability, higher convergence accuracy and convergence speed. Also, it is able to provide stable and fast planning of safe and feasible flight path with minimum cost and satisfying constraints.

     

  • loading
  • [1]
    胡中华, 赵敏, 姚敏, 等. 无人机航迹规划技术研究及发展趋势[J]. 航空电子技术, 2009, 40(2): 24-29. doi: 10.3969/j.issn.1006-141X.2009.02.006

    HU Z H, ZHAO M, YAO M, et al. Research and development trend of path planning for unmanned air vehicle[J]. Avionics Technology, 2009, 40(2): 24-29(in Chinese). doi: 10.3969/j.issn.1006-141X.2009.02.006
    [2]
    符小卫, 高晓光. 一种无人机路径规划算法研究[J]. 系统仿真学报, 2004, 16(1): 20-21. doi: 10.3969/j.issn.1004-731X.2004.01.007

    FU X W, GAO X G. Study on a kind of path planning algorithm for UAV[J]. Acta Simulata Systematica Sinica, 2004, 16(1): 20-21(in Chinese). doi: 10.3969/j.issn.1004-731X.2004.01.007
    [3]
    谌海云, 陈华胄, 刘强. 基于改进人工势场法的多无人机三维编队路径规划[J]. 系统仿真学报, 2020, 32(3): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202003009.htm

    CHEN H Y, CHEN H Z, LIU Q. Multi-UAV 3D formation path planning based on improved artificial potential field[J]. Journal of System Simulation, 2020, 32(3): 414-420(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202003009.htm
    [4]
    单文昭, 崔乃刚, 黄蓓, 等. 基于PSO-HJ算法的多无人机协同航迹规划方法[J]. 中国惯性技术学报, 2020, 28(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202001019.htm

    SHAN W Z, CUI N G, HUANG B, et al. Multiple UAV cooperative path planning based on PSO-HJ method[J]. Journal of Chinese Inertial Technology, 2020, 28(1): 122-128(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202001019.htm
    [5]
    李文广, 胡永江, 庞强伟, 等. 基于改进遗传算法的多无人机协同侦察航迹规划[J]. 中国惯性技术学报, 2020, 28(2): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002018.htm

    LI W G, HU Y J, PANG Q W, et al. Track planning of multi-UAV cooperative reconnaissance based on improved genetic algorithm[J]. Journal of Chinese Inertial Technology, 2020, 28(2): 248-255(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002018.htm
    [6]
    YU X B, LI C L, ZHOU J F. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios[J]. Knowledge-Based Systems, 2020, 204: 106209. doi: 10.1016/j.knosys.2020.106209
    [7]
    WANG X F, ZHAO H, HAN T, et al. A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem[J]. Applied Soft Computing, 2019, 78: 240-260. doi: 10.1016/j.asoc.2019.02.037
    [8]
    钱洲元, 雷明. 面向无人机航迹规划的自适应乌贼算法[J]. 哈尔滨工业大学学报, 2019, 51(10): 37-46. doi: 10.11918/j.issn.0367-6234.201805004

    QIAN Z Y, LEI M. Adaptive cuttlefish algorithm for UAV path planning[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 37-46(in Chinese). doi: 10.11918/j.issn.0367-6234.201805004
    [9]
    魏江, 王建军, 王健, 等. 基于改进蚁群算法的三维航迹规划[J]. 计算机工程与应用, 2020, 56(17): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202017032.htm

    WEI J, WANG J J, WANG J, et al. 3D path planning based on improved ant colony algorithm[J]. Computer Engineering and Applications, 2020, 56(17): 217-223(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202017032.htm
    [10]
    MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [11]
    崔东文. 鲸鱼优化算法在水库优化调度中的应用[J]. 水利水电科技进展, 2017, 37(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703012.htm

    CUI D W. Application of whale optimization algorithm in reservoir optimal operation[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 72-76(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703012.htm
    [12]
    BHASKAR N, KUMAR P M. Optimal processing of nearest-neighbor user queries in crowdsourcing based on the whale optimization algorithm[J]. Soft Computing, 2020, 24(17): 13037-13050. doi: 10.1007/s00500-020-04722-0
    [13]
    AGRAWAL R K, KAUR B, SHARMA S. Quantum based whale optimization algorithm for wrapper feature selection[J]. Applied Soft Computing, 2020, 89: 106092. doi: 10.1016/j.asoc.2020.106092
    [14]
    MOHANAKRISHNAN U, RAMAKRISHNAN B. MCTRP: An energy efficient tree routing protocol for vehicular ad hoc network using genetic whale optimization algorithm[J]. Wireless Personal Communications, 2020, 110(1): 185-206. doi: 10.1007/s11277-019-06720-4
    [15]
    LONG W, WU T B, JIAO J J, et al. Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model[J]. Engineering Applications of Artificial Intelligence, 2020, 89: 103457. doi: 10.1016/j.engappai.2019.103457
    [16]
    PHAM Q V, MIRJALILI S, KUMAR N, et al. Whale optimization algorithm with applications to resource allocation in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4285-4297. doi: 10.1109/TVT.2020.2973294
    [17]
    ZHANG H P, WANG H L, LI N, et al. Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones[J]. Neural Computing and Applications, 2020, 32(7): 2735-2749. doi: 10.1007/s00521-018-3764-y
    [18]
    吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2012.htm

    WU K, TAN S C. Path planning of UAVs based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2020S2012.htm
    [19]
    ABDEL-BASSET M, CHANG V, MOHAMED R. HSMA_WOA: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images[J]. Applied Soft Computing, 2020, 95: 106642. doi: 10.1016/j.asoc.2020.106642
    [20]
    覃溪, 龙文. 基于随机差分变异的改进鲸鱼优化算法[J]. 中国科技论文, 2018, 13(8): 937-942. doi: 10.3969/j.issn.2095-2783.2018.08.016

    QIN X, LONG W. An improved whale optimization algorithm based on stochastic differential mutation[J]. China Sciencepaper, 2018, 13(8): 937-942(in Chinese). doi: 10.3969/j.issn.2095-2783.2018.08.016
    [21]
    孔芝, 杨青峰, 赵杰, 等. 基于自适应调整权重和搜索策略的鲸鱼优化算法[J]. 东北大学学报(自然科学版), 2020, 41(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202001007.htm

    KONG Z, YANG Q F, ZHAO J, et al. Adaptive adjustment of weights and search strategies-based whale optimization algorithm[J]. Journal of Northeastern University (Natural Science), 2020, 41(1): 35-43(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202001007.htm
    [22]
    MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. http://www.sciencedirect.com/science/article/pii/S0950705115005043
    [23]
    LIU Z Z, WANG Y, YANG S X, et al. An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1403-1416. http://ieeexplore.ieee.org/document/8314547/
    [24]
    郑昌文. 飞行器航迹规划方法研究[D]. 武汉: 华中科技大学, 2003: 99-102.

    ZHENG C W. Research on route planning for air vehicles[D]. Wuhan: Huazhong University of Science and Technology, 2003: 99-102(in Chinese).
    [25]
    POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57. http://www.cell.com/servlet/linkout?suffix=e_1_5_1_2_25_2&dbid=16&doi=10.1016/j.tibtech.2008.09.005&key=10.1007%2Fs11721-007-0002-0&cf=
    [26]
    WANG T T, YANG L, LIU Q. Beetle swarm optimization algorithm: theory and application[EB/OL]. (2018-08-01)[2020-10-14]. https://arxiv.org/abs/1808.00206.
    [27]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. doi: 10.1080/21642583.2019.1708830
    [28]
    LI M D, ZHAO H, WENG X W, et al. A novel nature-inspired algorithm for optimization: Virus colony search[J]. Advances in Engineering Software, 2016, 92: 65-88. http://www.sciencedirect.com/science/article/pii/s0965997815001702
    [29]
    RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: A gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(8)

    Article Metrics

    Article views(550) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return