Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
XING Jingwen, JIN Jie, WANG Fanget al. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588(in Chinese)
Citation: XING Jingwen, JIN Jie, WANG Fanget al. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588(in Chinese)

Lean blowoff process of bluff body based on heat release rate analysis

doi: 10.13700/j.bh.1001-5965.2020.0588
Funds:

National Natural Science Foundation of China 91741125

Science and Technology Major Project 2017-I-0004-005

Science and Technology Major Project 2017-I-0001-0001

More Information
  • Corresponding author: WANG Fang, E-mail: fwang@buaa.edu.cn
  • Received Date: 19 Oct 2020
  • Accepted Date: 10 Feb 2021
  • Publish Date: 20 Mar 2022
  • To understand the complicated blowoff process of premixed turbulence methane-air flame after a conical bluff body, the numerical simulation method based on large eddy simulation (LES) and transport equation probability density function (TPDF) turbulence combustion model was adopted to simulate the flame situations, i.e. far away from blowoff, close to blowoff and blowoff conditions. The flame and the heat release rate (HRR) value under these different conditions were studied, and the criterion for lean blowoff judgement was analyzed quantitatively. The results show that the average relative error between velocity simulation results and experimental results is under 10% in cold situation and under 20% in hot situation. HRR appears in the region where OH and CH2O overlap, and is an important blowoff judgment parameter. When the flame is far away from blowoff conditions, HRR mainly appears at the inner shear layer; when close to blowoff conditions, HRR closes on the flow axis and also appears downstream of the recirculation zone; under blowoff conditions, higher HRR regions spread from downstream to upstream of the recirculation zone. The simulation blowoff predictions are consistent with the experimental PLIF results. In this study, the average HRR can be quantitatively used as a criterion for lean blowoff judgment. At 0.2d section behind the bluff body, blowoff will occur when the ratio of the average HRR for inner shear layer to the average HRR of the recirculation zone is less than 4.

     

  • loading
  • [1]
    LEFEBVRE A H, BALLAL D R. Gas turbine combustion[M]. New York: McGraw-Hill, 1983: 5-10.
    [2]
    DAWSON J R, GORDON R L, KARIUKI J, et al. Visualization of blow-off events in bluff-body stabilized turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1559-1566. doi: 10.1016/j.proci.2010.05.044
    [3]
    陶焰明, 肖为, 江立军. 基于半经验耦合的贫熄边界预测方法[J]. 航空动力学报, 2019, 34(5): 1111-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201905017.htm

    TAO Y M, XIAO W, JIANG L J. Prediction method of lean blow-out limit based on a hybrid semi-empirical model[J]. Journal of Aerospace Power, 2019, 34(5): 1111-1118(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201905017.htm
    [4]
    HODIZC E, DUWIG C, SZASZ R, et al. Large eddy simulation of lean blow off[C]//21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013.
    [5]
    LEE H, LEE B K. Stability limit of a bluff-body-stabilized lean premixed turbulent flame[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [6]
    FOALE M J, GIUSTI A, MASTORAKOS E. Numerical investigation of lean blow-out of kerosene spray flames with detailed chemical models[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [7]
    PAUL P H, NAJM H N. Planar laser-induced fluorescence imaging of flame heat release rate[J]. Symposium (International) on Combustion, 1998, 27(1): 43-50. doi: 10.1016/S0082-0784(98)80388-3
    [8]
    KARIUKI J, DOWLUT A, YUAN R, et al. Heat release imaging in turbulent premixed methane-air flames close to blow-off[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1443-1450. doi: 10.1016/j.proci.2014.05.144
    [9]
    HODZIC E, JANGI M, SZASZ R Z, et al. Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method[J]. Combustion and Flame, 2017, 181: 1-15. doi: 10.1016/j.combustflame.2017.03.010
    [10]
    JONES W P, KAKHI M. PDF modeling of finite-rate chemistry effects in turbulent nonpremixed jet flames[J]. Combustion and Flame, 1998, 115(1-2): 210-229. doi: 10.1016/S0010-2180(98)00002-9
    [11]
    CLAYTON D J, JONES W P. Large eddy simulation of a methane-air diffusion flame[J]. Flow, Turbulence and Combustion, 2008, 81(4): 497-521. doi: 10.1007/s10494-008-9143-5
    [12]
    JONES W P, LETTIERI C. Large eddy simulation of spray atomization with stochastic modeling of breakup[J]. Physics of Fluids, 2010, 22(11): 115-106.
    [13]
    曾家, 金捷, 张晟, 等. 基于LES-PDF方法的双旋流模型燃烧室数值模拟[J]. 气体物理, 2019, 4(5): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201905008.htm

    ZENG J, JIN J, ZHANG S, et al. Numerical simulation of double swirl model combustor based on LES-PDF method[J]. Physics of Gases, 2019, 4(5): 52-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201905008.htm
    [14]
    金捷, 刘邓欢. 航空发动机燃烧室湍流两相燃烧模型发展现状[J]. 南京航空航天大学学报, 2016, 48(3): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201603002.htm

    JIN J, LIU D H. Development status of turbulent two-phase combustion model in aero-engine combustion chamber[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3): 303-309(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201603002.htm
    [15]
    JONES W P, NAVARRO-MARTINEZ S. Large eddy simulation of auto-ignition with a subgrid probability density function method[J]. Combustion and Flame, 2007, 150(3): 170-187. doi: 10.1016/j.combustflame.2007.04.003
    [16]
    JONES W P, PRASAD V N. Large eddy simulation of the S andia flame series (D-F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
    [17]
    JONES W P, MARQUIS A J, PRASAD V N. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159(10): 3079-3095. doi: 10.1016/j.combustflame.2012.04.008
    [18]
    JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics, 1999, 401(2): 85-121.
    [19]
    BALACHANDRAN R, AYOOLA B O, KAMINSKI C F, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143(1-2): 37-55. doi: 10.1016/j.combustflame.2005.04.009
    [20]
    KARIUKI J, DAWSON J R, MASTORAKOS E. Measurements in turbulent premixed bluff body flames close to blow-off[J]. Combustion and Flame, 2012, 159(8): 2589-2607. doi: 10.1016/j.combustflame.2012.01.005
    [21]
    SUNG C J, LAW C K, CHEN J Y. Augmented reduced mechanisms for NO emission in methane oxidation[J]. Combustion and Flame, 2001, 125(1-2): 906-919. doi: 10.1016/S0010-2180(00)00248-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views(407) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return