Volume 48 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
WANG Hui, HE Tianyu, DU Xianchen, et al. Multi-layer design method of tension rope for paraboloid antenna[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 657-664. doi: 10.13700/j.bh.1001-5965.2020.0616(in Chinese)
Citation: WANG Hui, HE Tianyu, DU Xianchen, et al. Multi-layer design method of tension rope for paraboloid antenna[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 657-664. doi: 10.13700/j.bh.1001-5965.2020.0616(in Chinese)

Multi-layer design method of tension rope for paraboloid antenna

doi: 10.13700/j.bh.1001-5965.2020.0616
Funds:

National Natural Science Foundation of China 51635002

More Information
  • Corresponding author: WANG Chunjie, E-mail: wangcj@buaa.edu.cn
  • Received Date: 04 Nov 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Apr 2022
  • Satellite-borne paraboloid antenna may vibrate during orbit operation due to attitude adjustment or environmental factors, thus reducing its performance. In order to reduce the influence of vibration, it is necessary to add tension rope to enhance the antenna stiffness. Therefore, a new multi-layer design method of tension rope is proposed. In this method, the paraboloid antenna is divided into multiple layers and the tension of each layer is adjusted to improve the structural stiffness of the antenna and reduce the shape error caused by the tension force as far as possible. In order to verify the effectiveness of the above method, the finite element model of the antenna is established. On this basis, the finite element analysis is carried out, and the structural stiffness and shape error under different tension parameters are studied. In order to improve the stiffness of the structure and reduce the shape error caused by the tension force, the tension parameters are optimized. In order to improve the efficiency of optimization calculation, the response surface method is used to establish a surrogate model to participate in the optimization iterative calculation. Non-inferior sorting genetic algorithm (NSGA-Ⅱ) is used to complete the iterative calculation. The optimized tension parameters further improve the performance of the antenna. This research can provide theoretical guidance for the design of truss deployable paraboloid antenna.

     

  • loading
  • [1]
    ANDO K, MITSUGI J, SENBOKUYA Y. Analyses of cable-membrane structure combined with deployable truss[J]. Computers & Structures, 2000, 74(1): 21-39.
    [2]
    刘荣强, 田大可, 邓宗全, 等. 多模块构架式空间可展开天线背架的模态分析[J]. 北京理工大学学报, 2011, 31(6): 685-690. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201106014.htm

    LIU R Q, TIAN D K, DENG Z Q, et al. Modal analysis of truss structure for deployable truss antenna with multi-module[J]. Journal of Beijing University of Technology, 2011, 31(6): 685-690(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201106014.htm
    [3]
    崔吉. 大尺度可展开式抛物面天线机构的设计与展开性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    CUI J. Design and analysis of large volume deployable parabolic antenna mechanism[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [4]
    史创. 基于四棱柱可展单元的索杆张拉式天线机构研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    SHI C. Research on cable-strut tension antenna mechanism based on quadriprism deployable unit[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [5]
    刘望. 星载大型索网天线结构非线性动力学建模及形面误差特性研究[D]. 长沙: 国防科学技术大学, 2013.

    LIU W. Research on nonlinear dynamic modeling and surface error characteristics of spaceborne large cable-network antenna structures[D]. Changsha: University of National Defense Science and Technology, 2013(in Chinese).
    [6]
    杨东武, 保宏. 非对称索网抛物面天线力平衡特性及预拉力设计[J]. 机械工程学报, 2009, 45(8): 314-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200908056.htm

    YANG D W, BAO H. Force balance characteristics and pretension design of asymmetric cable net paraboloid antenna[J]. Journal of Mechanical Engineering, 2009, 45(8): 314-318(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200908056.htm
    [7]
    王朋朋, 薛永刚, 高博. 伞状天线张力绳索热变形敏感性分析[J]. 空间电子技术, 2014, 11(3): 20-24. doi: 10.3969/j.issn.1674-7135.2014.03.005

    WANG P P, XUE Y G, GAO B. Sensitivity analysis of tensile cables thermal distortion in umbrella antenna[J]. Space Electronics Technology, 2014, 11(3): 20-24(in Chinese). doi: 10.3969/j.issn.1674-7135.2014.03.005
    [8]
    侯国勇, 关富玲, 赵孟良. 桁架式可展开天线精度计算方法[J]. 浙江大学学报(工学版), 2008, 42(9): 1469-1473. doi: 10.3785/j.issn.1008-973X.2008.09.001

    HOU G Y, GUAN F L, ZHAO M L. Error computation method of deployable truss antenna[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1469-1473(in Chinese). doi: 10.3785/j.issn.1008-973X.2008.09.001
    [9]
    范叶森, 马小飞, 李正军, 等. 绳索长度误差对索网天线网面精度影响的分析方法[J]. 华南理工大学学报(自然科学版), 2014, 42(8): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201408012.htm

    FAN Y S, MA X F, LI Z J, et al. Analysis method of influence of cable length errors on surface accuracy of cable-net antennas[J]. Journal of South China University of Technology (Natural Science), 2014, 42(8): 64-69(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201408012.htm
    [10]
    高海燕, 袁茹, 王三民. 径射状可展天线反射器结构固有模态分析[J]. 机械设计与制造, 2007(5): 174-176. doi: 10.3969/j.issn.1001-3997.2007.05.073

    GAO H Y, YUAN R, WANG S M. The natural modal analysis for reflectible device of space deployable antenna[J]. Mechanical Design and Manufacturing, 2007(5): 174-176(in Chinese). doi: 10.3969/j.issn.1001-3997.2007.05.073
    [11]
    李彬, 胡国伟, 黄芬. 周边桁架可展开天线索网结构力密度优化找形方法[J]. 桂林电子科技大学学报, 2009, 29(5): 373-376. doi: 10.3969/j.issn.1673-808X.2009.05.001

    LI B, HU G W, HUANG F. Form-finding optimization of flexible cable net of AstroMesh deployable reflector by force-density method[J]. Journal of Guilin University of Electronic Technology, 2009, 29(5): 373-376(in Chinese). doi: 10.3969/j.issn.1673-808X.2009.05.001
    [12]
    方永刚, 薛永刚, 王勇. 卫星天线展开用kevlar绳索使用寿命研究[C]//第三届中国国际复合材料科技大会, 2017: 1.

    FANG Y G, XUE Y G, WANG Y. Research on the service life of kevlar ropes for satellite antenna deployment[C]//The 3rd China International Composite Science and Technology Conference, 2017: 1(in Chinese).
    [13]
    刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LIU Z J. Design and manufacture of supporting structure for modular deployable parabpolic antenna[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [14]
    MEGURO A, ISHIKAWA H, TSUJIHATA A. Study on ground verification for large deployable modular structures[J]. Journal of Spacecraft & Rockets, 2006, 43(4): 780-787.
    [15]
    MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Method in Applied Mechanics and Engineering, 1995, 121(1-4): 259-280. doi: 10.1016/0045-7825(94)00714-X
    [16]
    吴宏宇, 王春洁, 丁宗茂, 等. 两种着陆模式下的着陆器缓冲机构构型优化[J]. 宇航学报, 2017, 38(10): 1032-1040. doi: 10.3873/j.issn.1000-1328.2017.10.003

    WU H Y, WANG C J, DING Z M, et al. Configuration optimization of landing gear under two kinds of landing modes[J]. Acta Astronautics, 2017, 38(10): 1032-1040(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.10.003
    [17]
    WU H Y, NIU W D, WANG S X, et al. Sensitivity analysis of input errors to motion deviations of underwater glider based on optimized response surface methodology[J]. Ocean Engineering, 2020, 209: 107400.
    [18]
    WU H Y, NIU W D, WANG S X, et al. Prediction method of permissible error ranges of control parameters for underwater gliders under given operation accuracy[J]. Applied Ocean Research, 2020, 103: 102153.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(10)

    Article Metrics

    Article views(489) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return