Tian Yuan, Wang Junbo, Ren Zhanget al. Fuzzy guidance law for interception of exoatmospheric maneuvering targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 816-820. (in Chinese)
Citation: WANG Hanbin, HE Xi, WANG Jinjunet al. Experimental study on aerodynamic and deformation characteristics of flexible membrane wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 665-673. doi: 10.13700/j.bh.1001-5965.2020.0617(in Chinese)

Experimental study on aerodynamic and deformation characteristics of flexible membrane wing

doi: 10.13700/j.bh.1001-5965.2020.0617
Funds:

NSFC Projects of International Cooperation and Exchanges 11761131009

Science Fund for Creative Research Groups 11721202

More Information
  • Corresponding author: WANG Jinjun, E-mail: jjwang@buaa.edu.cn
  • Received Date: 04 Nov 2020
  • Accepted Date: 25 Dec 2020
  • Publish Date: 20 Apr 2022
  • Micro air vehicles (MAV) have wide appications in both miltary and civilian fields, and flexible membrane wings are an effective method to improve the aerodynamic of MAV. In order to better control the flexible wing, the vibration and deformation characteristics of the flexible membrane wing and their impact on aerodynamic force are measured synchronously. Compared with the rigid wing, for the flexible membrane wing, the stall angle of attack is delayed by 6°, the maximum lift coefficient is increased by 47.4%, and the lift-drag ratio is increased by 17.8%. In addition to the characteristics of large amplitude and small static deformation at α=0°~2°, the amplitude of the periodic vibration of the flexible membrane wing undergoes a transition from no obvious crest, three crests to one crest as the angle of attack increases. When the lift coefficient is maximum, the corresponding membrane deformation and vibration amplitude both reach their maxima. Besides, the chordwise position of the maximum deformation changes with the angle of attack, which determines the pitching moment characteristics. Based on these results, an active control method of improving aerodynamic performance by applying deformation and vibration excitation with specific frequency is proposed.

     

  • [1]
    SHYY W, IFJU P, VⅡERU D. Membrane wing-based micro air vehicles[J]. Applied Mechanics Reviews, 2005, 58(4): 283-301. doi: 10.1115/1.1946067
    [2]
    LISSAMAN P B S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 2003, 15(1): 223-239.
    [3]
    SWARTZ S M, IRIARTE-DIAZ J, RISKIN D K, et al. A bird A plane No, it's a bat: An introduction to the biomechanics of bat flight[M]. Cambridge: Cambridge University Press, 2012: 317-351.
    [4]
    SWARTZ S M. Allometric patterning in the limb skeleton of bats: Implications for the mechanics and energies of powered flight[J]. Journal of Morphology, 1997, 234(3): 277-294. doi: 10.1002/(SICI)1097-4687(199712)234:3<277::AID-JMOR6>3.0.CO;2-6
    [5]
    SWARTZ S M, BENNETT M B, CARRIER D R. Wing bone stresses in free flying bats and the evolution of skeletal design for flight[J]. Nature, 1992, 359(6397): 726-729. doi: 10.1038/359726a0
    [6]
    TIAN X D, IRIARTE J, MIDDLETON K, et al. Direct measurements of the kinematics and dynamics of bat flight[C]//36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006, 1: 10-18.
    [7]
    WANG S Z, ZHANG X, HE G W, et al. Lift enhancement by bats' dynamically changing wingspan[J]. Journal of the Royal Society Interface, 2015, 12(113): 2-11.
    [8]
    SHYY W, JENKINS D, SMITH R. Study of adaptive shape airfoils at low reynolds number in oscillatory flows[J]. AIAA Journal, 1997, 35(9): 1545-1548. doi: 10.2514/2.7484
    [9]
    LEVIN O, SHYY W. Optimization of a low reynolds number airfoil with flexible membrane[J]. Computer Modeling in Engineering and Sciences, 2001, 2(4): 523-536.
    [10]
    BÉGUIN B, BREITSAMTER C, ADAMS N. Experimental investigations of an elasto-flexible morphing wing concept[C]//27th Congress of the International Council of the Aeronautical Sciences, 2010, 9: 1-11.
    [11]
    BÉGUIN B, BREITSAMTER C, ADAMS N. Aerodynamic investigations of a morphing membrane wing[J]. AIAA Journal, 2012, 50(11): 2588-2599. doi: 10.2514/1.J051772
    [12]
    HE X, GUO Q F, WANG J J. Extended flexible trailing-edge on the flow structures of an airfoil at high angle of attack[J]. Experiments in Fluids, 2019, 60(8): 122-143. doi: 10.1007/s00348-019-2767-5
    [13]
    GUO Q F, HE X, WANG Z, et al. Effects of flexible wing on the aerodynamic performance of an aircraft model[J]. Chinese Journal of Aeronautics, 2021, 34(9): 133-142. doi: 10.1016/j.cja.2021.01.012
    [14]
    ROJRATSIRIKUL P, WANG Z, GURSUL I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils[J]. Journal of Fluids and Structures, 2010, 26(3): 359-376. doi: 10.1016/j.jfluidstructs.2010.01.005
    [15]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 9(1): 62-66.
    [16]
    GORDNIER R. High fidelity computational simulation of a membrane wing airfoil[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting And Exhibit. Reston: AIAA, 2008, 1: 7-10.
    [17]
    MATLIS E H, HE C, CORKE T C, et al. Sensing and control of flow separation using plasma actuators[J]. Philosophical Transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences, 2011, 369(1940): 1459-1475. doi: 10.1098/rsta.2010.0356
    [18]
    ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 859. doi: 10.1007/s00348-009-0623-8
    [19]
    NEWMAN B G, LOW H T. Two-dimensional impervious sails: Experimental results compared with theory[J]. Journl of Fluid Mechanics, 1984, 144: 445-462. doi: 10.1017/S0022112084001683
    [20]
    HE X, WANG J J. Fluid-structure interaction of a flexible membrane wing at a fixed angle of attack[J]. Physics of Fluids, 2020, 32(12): 127102. doi: 10.1063/5.0029378
    [21]
    叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010: 86-109.

    YE Z Y, ZHANG W W, SHI A M. Fundamentals of fluid-solid coupling mechanics and its application[M]. Harbin: Harbin Institute of Technology Press, 2010: 86-109(in Chinese).
  • Relative Articles

    [1]DENG H W,HOU Y J,ZHANG C Y,et al. Mental fatigue recognition algorithm based on cascade forest and multi-modal fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):584-593 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0030.
    [2]XU C,XIAO Y,DENG P C. Fatigue life prediction of CFRP flat-joggle-flat bonded joint[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):518-524 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0048.
    [3]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [4]HUO Jiuyuan, LI Xin, CHANG Chen, LI Yufeng, ZHANG Yaonan. Roll bearing life prediction based on multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0161
    [5]LIU Shenshen, JIANG Bo, HAN Qinghua, YU Jing, YANG Xiaofeng, WEI Dong, ZHU Yandan, GUI Yewei. Study of cumulative thermal deformation characteristics and its impacts under long-endurance aerodynamic-thermal coupling effects[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0486
    [6]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [7]LI J Q,FANG Q,FAN T C,et al. Fatigue detection of facial 3D physiological feature points in sleep deprivation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2753-2762 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0733.
    [8]WANG Li-li, YIN Shuo-feng, PAN Yue. Controller fatigue discrimination algorithm based on facial features[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0057
    [9]ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0762.
    [10]LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0713.
    [11]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [12]ZHAO Yu-yu, SUO Chao, WANG Yu-xiao. BSVAR-based remaining useful life prediction for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0643
    [13]WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0741.
    [14]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [15]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [16]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [17]ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0247.
    [18]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [19]GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213.
    [20]FENG Jianguang, ZHENG Zixia, LONG Dongteng, ZHOU Bo, LU Mingquan, ZHENG Heng. Method for predicting on-orbit residual life of satellite atomic clock[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2215-2221. doi: 10.13700/j.bh.1001-5965.2021.0087
  • Cited by

    Periodical cited type(12)

    1. 班金磊,赵智辉,韩永建,周振华,王飞,耿杰. 聚酰亚胺薄膜疲劳寿命分析和可靠性增长措施. 环境技术. 2024(01): 140-146 .
    2. 唐宏宾,龚杨春,董晋阳,陈思源. 基于CNN-SE-LSTM和多传感器数据的轴向柱塞泵故障诊断. 机床与液压. 2024(16): 224-232 .
    3. 赵红斌. 截割介质物理力学参数对液压冲击截齿破煤率影响的研究. 煤矿机械. 2023(02): 51-54 .
    4. 高翔,李昆,万晓飞,穆文堪,谯维智. 基于双金属柱塞体的缸体轻量化设计分析. 机床与液压. 2023(06): 114-120 .
    5. 唐宏宾,杨婧,唐一. 轴向柱塞泵疲劳损伤分析及寿命预测. 机床与液压. 2023(16): 165-171 .
    6. 侯玉峰,高岩,徐显亮. 燃油调节器壳体裂纹失效分析. 航空发动机. 2022(01): 103-109 .
    7. 陈乐,高文科,冀宏,张磊. 基于HP滤波与ARIMA-GARCH模型的柱塞泵泄漏量预测. 农业工程学报. 2022(10): 61-67 .
    8. 孙晓旭,鲁植雄,陈元. 重型拖拉机液压机械无级变速器箱体疲劳寿命分析. 机械科学与技术. 2022(12): 1844-1851 .
    9. 李耀华,刘洋,宋伟萍,邵攀登,任田园. 基于行驶工况的零部件耐久性测试工况构建. 重庆交通大学学报(自然科学版). 2021(04): 141-146 .
    10. 黄烨. 多缸高压径向柱塞泵设计及泵壳有限元分析. 煤矿机械. 2021(10): 90-92 .
    11. 任晓燕,张国伟,徐宏,孙凤儿,康圆圆,王明杰,牛经纬,徐超,吕伟泽. ZCuPb_(20)Sn_5合金耐磨性能研究. 摩擦学学报. 2020(04): 467-476 .
    12. 南西康,高文科,陈旭峰,孙天齐,冀宏. 基于非线性Wiener过程的柱塞泵剩余使用寿命分析. 液压与气动. 2020(11): 45-52 .

    Other cited types(25)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(558) PDF downloads(341) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return