Citation: | LI Biao, WANG Liangming, YANG Zhiweiet al. Numerical analysis on drag reduction effect of base cavity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 682-690. doi: 10.13700/j.bh.1001-5965.2020.0623(in Chinese) |
In order to investigate the drag reduction mechanism of the base-cavity projectile, the flow field characteristics of M910 projectile are numerically simulated through the 3-dimensional steady CFD method. The zero-lift drag coefficient variation with Mach number are presented. The computational results have a good agreement with the experimental data. On this basis, a base cavity is introduced for M910 projectile that is named M910BC in this paper and then numerically simulated. The base flow field characteristics of the projectile with different base structures are compared and the drag reduction mechanism of the base cavity is analyzed. The results show that at subsonic speed, the drag reduction of the base-cavity projectile is found to be mainly due to the introduction of the high-pressure "dead zone" in base cavity and the displacement of the solid base with the compliant fluid boundary of the cavity base. Because of that, the forming location, shape and strength of the wake vortex are slightly changed. At transonic speed, the drag reduction effect of base cavity is vanished since the wake vortex is further from the base of projectile and the effects of the solid base and fluid boundary are the same. At supersonic speed, the drag reduction mechanism of the base cavity is that the mass of the recirculation region is increased by the flow of the base cavity, which is similar to the drag reduction mechanism of the base bleed projectile.
[1] |
臧国才, 李树常. 弹箭空气动力学[M]. 北京: 兵器工业出版社, 1989: 142-144.
ZANG G C, LI S C. Aerodynamics of projectiles and missiles[M]. Beijing: Publishing House of Ordnance Industry, 1989: 142-144(in Chinese).
|
[2] |
TANNER M. Base cavity at angles of incidence[J]. AIAA Journal, 1988, 26(3): 376-377. doi: 10.2514/3.9903
|
[3] |
SAHU J. A computational study of the base region flow field for the M865 projectile: ARL-TR-109[R]. Reston: AIAA, 1993.
|
[4] |
SAHU J, NIRTUBICZ C J. Three dimensional flow calculations for a projectile with standard and dome bases: BRL-TR-3150[R]. Reston: AIAA, 1990.
|
[5] |
SAHU J, NIETUBICZ C J, HEAVEY K R. Computational study of the M825 projectile with standard and dome base: BRL-MR-3662[R]. Reston: AIAA, 1986.
|
[6] |
HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near-wake of a cylindrical afterbody[J] AIAA Jornal, 1994, 32(1): 77-83. doi: 10.2514/3.11953
|
[7] |
KRUISWYK R W, DUTTON J C. Effects of a base cavity on subsonic near-wake flow[J]. AIAA Journal, 1990, 28(11): 1885-1893. doi: 10.2514/3.10495
|
[8] |
KRUISWYK R W, DUTTON J C. An experimental investigation of the effects of base cavity on the near-wake flowfield of a body at subsonic and transonic speeds[C]//Proceedings of 27th Aerospace Sciences Meeting. Reston: AIAA, 1989: 210.
|
[9] |
MOLEZZI M J, DUTTON J C. Study of subsonic base cavity flowfield structure using particle image velocimetry[J]. AIAA Journal, 1995, 33(2): 201-209. doi: 10.2514/3.12390
|
[10] |
FOURNIER E Y, DUPUIS A D, EDWARDS J A. Base cavity effects on the aerodynamic characteristics of a hypersonic flared projectile[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 737-743. doi: 10.2514/2.3304
|
[11] |
FOURNIER E Y, DUPUIS A D. Computational fluid dynamic analysis of the base cavity interactions of the CAN-4 research projectile: DREV-TM-9620[R]. Quebec: Defense R & D, 1997.
|
[12] |
SIMON F, DECK S, GUILLEN P, et al. Zonal-detached-eddy simulation of projectiles in the subsonic and transonic regimes[J]. AIAA Journal, 2007, 45(7): 1606-1619. doi: 10.2514/1.26827
|
[13] |
SIMON F, DECK S, GUILLEN P. Reynolds-averaged Navier-Stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 2006, 44(11): 2578-2590. doi: 10.2514/1.21366
|
[14] |
谷嘉锦. 底凹弹丸的风洞实验研究[J]. 南京航空航天大学学报, 1979, 12(1): 243-253. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK197901016.htm
GU J J. The study of wind tunnel experiments of a ball with hollow base[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1979, 12(1): 243-253(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK197901016.htm
|
[15] |
浦发, 王中原. 超音速底凹弹减阻机理的研究[J]. 弹道学报, 1989, 9(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB198901010.htm
PU F, WANG Z Y. The analysis of drag reduction in supersonic speed for projectiles with base cavity[J]. Journal of Ballisitics, 1989, 9(1): 63-67(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB198901010.htm
|
[16] |
王中原. 超声速底凹弹侧壁开孔对飞行阻力的影响[J]. 空气动力学学报, 1997, 15(4): 502-506. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199704012.htm
WANG Z Y. The effect about projectiles of base cavity with side holes to flight drag under supersonic flow[J]. Acta Aerodynamic Sinca, 1997, 15(4): 502-506(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199704012.htm
|
[17] |
王中原. 底凹弹侧壁斜孔减小底阻分析[J]. 南京理工大学学报, 1997, 21(1): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG701.004.htm
WANG Z Y. Analysis of base drag reduced by side holes in the projectile with base cavity[J]. Journal of Nanjing University of Science and Technology, 1997, 21(1): 21-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG701.004.htm
|
[18] |
PAN S C, CAI J S. Investigation of vortical flow over bluff bodies with base cavities[J]. Acta Mechanica Sinica, 2012, 28(5): 1238-1247. doi: 10.1007/s10409-012-0143-2
|
[19] |
轩海彬, 张文洁, 于勇, 等. 亚跨声速流动中底凹减阻的数值模拟[J]. 兵器装备工程学报, 2017, 38(11): 1-8. doi: 10.11809/scbgxb2017.11.001
XUAN H B, ZHANG W J, YU Y, et al. Numerical study on drag reduction of projectile in subsonic and transonic speed[J]. Journal of Ordnance Equipment Engineering, 2017, 38(11): 1-8(in Chinese). doi: 10.11809/scbgxb2017.11.001
|
[20] |
陆海波, 颛孙世周, 孙凤文, 等. 不同形状底凹结构对火炮弹丸飞行阻力影响研究[J]. 弹箭与制导学报, 2016, 36(5): 112-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201605031.htm
LU H B, ZHUANSUN S Z, SUN F W, et al. Research on influence of base cavity with different shape on aerodynamic drag of projectile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(5): 112-114(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201605031.htm
|
[21] |
陆海波, 高洁. 侧倾底凹结构对火炮弹丸阻力的影响[J]. 兵器装备工程学报, 2019, 40(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906002.htm
LU H B, GAO J. Research on shrinkage shape of base cavity upon aerodynamic drag of projectile[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 5-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906002.htm
|
[22] |
DESPIRITO J, HEAVEY K. CFD computation of magnus moment and roll-damping moment of a spinning projectile[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004: 1-24.
|
[23] |
于勇. Fluent入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008: 23-25.
YU Y. Fluent introductory and advanced tutorials[M]. Beijing: Beijing Institute of Technology Press, 2008: 23-25(in Chinese).
|
[24] |
LAUNDER B E, SHARMA B I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letter in Heat and Mass Transfer, 1974, 1(11): 131-138.
|
[25] |
雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6): 718-725. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201306010.htm
LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6): 718-725(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201306010.htm
|
[26] |
卓长飞, 武晓松, 封峰. 超声速流动中底部排气减阻的数值研究[J]. 兵工学报, 2014, 35(1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201401003.htm
ZHUO C F, WU X S, FENG F. Numerical research on drag reduction of base bleed in supersonic flow[J]. Acta Armamentarii, 2014, 35(1): 18-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201401003.htm
|