Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Yantai, SUN Jianhong, HOU Bin, et al. Design and test of the ejection emergency flight data recording and tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624(in Chinese)
Citation: ZHANG Yantai, SUN Jianhong, HOU Bin, et al. Design and test of the ejection emergency flight data recording and tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624(in Chinese)

Design and test of the ejection emergency flight data recording and tracking system

doi: 10.13700/j.bh.1001-5965.2020.0624
Funds:  Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
  • Corresponding author: SUN Jianhong, E-mail: jhsun@nuaa.edu.cn
  • Received Date: 09 Nov 2020
  • Accepted Date: 08 Jan 2021
  • Publish Date: 20 Nov 2021
  • The ejection emergency flight data recording and tracking system consists of the intelligent ejection separation, tow-type image tracking, inflatable soft-landing and data transmitting. In this paper, the key subsystem design and UAV test verification are carried out. According to the characteristics of the parachute-airbag module, the variation of the canopy drag coefficient in the airbag wake region is analyzed. The results show that the radius of the airbag and the nominal diameter of the canopy are the main factors affecting the canopy drag coefficient. The canopy drag coefficient decreases with the increase of the radius of airbag, and increases with the increase of the nominal diameter of the canopy. Based on the aerodynamic analysis and the numerical simulation, the canopy drag coefficient formula is obtained. Meanwhile, the full functions are achieved by UAV test, and it is proved that the system scheme is reasonable and feasible. It provides an important reference for the subsequent engineering application.

     

  • loading
  • [1]
    WISEMAN Y. Unlimited and protected memory for flight data recorders[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(6): 866-872. doi: 10.1108/AEAT-06-2015-0152
    [2]
    LIANG G, WAN G, WANG J, et al. A novel underwater location beacon signal detection method based on mixing and normalizing stochastic resonance[J]. Sensors, 2020, 20(5): 1292. doi: 10.3390/s20051292
    [3]
    LI L, DAS S, JOHN H R, et al. Analysis of flight data using clustering techniques for detecting abnormal operations[J]. Journal of Aerospace Information Systems, 2015, 12(9): 587-598. doi: 10.2514/1.I010329
    [4]
    王伟, 费益. 民用飞机飞行记录系统研究[J]. 电光与控制, 2013, 20(3): 73-76. doi: 10.3969/j.issn.1671-637X.2013.03.017

    WANG W, FEI Y. Flight recording system of civil aircraft[J]. Electronics Optics & Control, 2013, 20(3): 73-76(in Chinese). doi: 10.3969/j.issn.1671-637X.2013.03.017
    [5]
    ZHU M Y, ZHAO Y F, ZHANG C, et al. High precision positioning for searching airborne black boxes underwater based on acoustic orbital angular momentum[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018: 1-9.
    [6]
    LIU W Y, RICHARD J, CHEN C F. Underwater positioning study of flight recorder[C]//2019 IEEE Underwater Technology (UT). Piscataway: IEEE Press, 2019: 1-5.
    [7]
    WANG S S, HUNG H S, HO J J, et al. Improving detection technique for flight recorders of the distress airplanes crashed into ocean by integrating inertial navigation system into underwater locator beacon[J]. Journal of Marine Science and Technology, 2015, 23(4): 467-474.
    [8]
    COLL G T, PELLEGRINO J F, PILCHUK J. Black box: Improving aircraft safety by bringing the black box from the bottom of the sea to outer space[C]//AIAA Space and Astronautics Forum and Exposition. Reston: AIAA, 2017: 5130.
    [9]
    WANG Y, WAN K, ZHANG C, et al. Optimized real-time flight data streaming via air-to-air links for civil aviation[C]//2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
    [10]
    QIN H, KONG X, SHU P. Real-time downloading and analysis of QAR data using air-to-ground wireless communication[C]//2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Piscataway: IEEE Press, 2019: 519-524.
    [11]
    YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: U.S. Patent 9[P]. 2016-09-13.
    [12]
    张晓敏. 民机坠撞事故分析及典型吸能结构特性研究[D]. 天津: 中国民航大学, 2013: 7-21.

    ZHANG X M. Civil aircraft crash accidents analysis and typical energy-absorbing structure characteristics research[D]. Tianjin: Civil Aviation University of China, 2013: 7-21(in Chinese).
    [13]
    SEIGEL A E. The theory of high speed guns: AD0475660[R]. France: Advisory Group for Aerospace Research and Development, 1964.
    [14]
    US Department of Defense. Package cushioning design: MIL-HDBK-304 A-1974[S]. Washington, D.C. : US Department of Defense, 1974.
    [15]
    雷江利, 荣伟, 贾贺, 等. 国外新一代载人飞船减速着陆技术研究[J]. 航天器工程, 2017, 26(1): 100-109. doi: 10.3969/j.issn.1673-8748.2017.01.015

    LEI J L, RONG W, JIA H, et al. Resrarch on descent and landing technology for new generation manned spacecraft[J]. Spacecraft Engineering, 2017, 26(1): 100-109(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.01.015
    [16]
    王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997: 82-83.

    WANG L R. Parachute theory and application[M]. Beijing: Astronautics Publishing House, 1997: 82-83(in Chinese).
    [17]
    孙建红, 周涛, 李名琦, 等. 直升机应急气囊充气及冲击着水过程数值分析[J]. 南京航空航天大学学报, 2012, 44(5): 713-717. doi: 10.3969/j.issn.1005-2615.2012.05.017

    SUN J H, ZHOU T, LI M Q, et al. Numerical analysis of emergent airbag deployment and ditching crashworthiness process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 713-717(in Chinese). doi: 10.3969/j.issn.1005-2615.2012.05.017
    [18]
    王一波, 孙建红, 侯斌, 等. 小型电子设备着陆缓冲气囊的缓冲性能分析[J]. 航天返回与遥感, 2018, 39(5): 25-33. doi: 10.3969/j.issn.1009-8518.2018.05.004

    WANG Y B, SUN J H, HOU B, et al. Cushioning performance analysis of landing buffer airbag for small electronic equipment[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(5): 25-33(in Chinese). doi: 10.3969/j.issn.1009-8518.2018.05.004
    [19]
    HUANG D Z, AVERY P, FARHAT C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing[EB/OL]. (2020-01-06)[2020-10-11]. https://arxiv.org/abs/1912.01658.
    [20]
    SHPUND Z, LEVIN D. Forebody influence on rotating parachute aerodynamic properties[J]. Journal of Aircraft, 1997, 34(2): 181-186. doi: 10.2514/2.2170
    [21]
    TANG J, QIAN L. Numerical study of forebody wake effect on axisymmetric parachute opening shock and drag reduction[J]. Mathematical and Computer Modelling of Dynamical Systems, 2016, 22(2): 141-159. doi: 10.1080/13873954.2016.1149492
    [22]
    HAMMAN C W, KLEWICKIl J C, KIRBY R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284. doi: 10.1017/S0022112008002760
    [23]
    FANG M, SUN J H, ZHANG T, et al. Flow characteristics of double-cruciform parachute at inflating and inflated conditions[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2018, 35(6): 992-999. http://www.cqvip.com/QK/85388X/201806/7001106903.html
    [24]
    许常悦, 郑静, 王哲, 等. 方柱跨声速流动中的剪切层和尾迹特性[J]. 上海交通大学学报, 2020, 55(4): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202104008.htm

    XU C Y, ZHENG J, WANG Z, et al. The shear layer and wake characteristics of square cylinder in the transonic flow[J]. Journal of Shanghai Jiaotong University, 2020, 55(4): 9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202104008.htm
    [25]
    刘学翱, 吴宏宇, 王春洁, 等. 着陆器变阻尼缓冲器性能分析及参数优化[J]. 北京航空航天大学学报, 2018, 44(10): 2149-2155. doi: 10.13700/j.bh.1001-5965.2017.0805

    LIU X A, WU H Y, WANG C J, et al. Performance analysis and parameter optimization of lander with variable damping buffer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2149-2155(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0805
    [26]
    刘帅, 王占学, 周莉, 等. 基于响应面法的短距/垂直起降飞机近地面升力损失[J]. 航空动力学报, 2017, 32(4): 874-881. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704014.htm

    LIU S, WANG Z X, ZHOU L, et al. Lift loss of short/vertical takeoff and landing aircraft proximity of ground base on response surface method[J]. Journal of Aerospace Power, 2017, 32(4): 874-881(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(411) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return