Citation: | DONG Shengfei, HUANG Xinghua, YANG Xiaoyiet al. Energy consumption for production of jet fuel precursors from cellulosic biomass by hydrothermal method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 620-631. doi: 10.13700/j.bh.1001-5965.2020.0644(in Chinese) |
Biomass for production of alternative jet fuel has a very important impact on global carbon reduction and the control of greenhouse gas emissions. Wide sources and large annual output of cellulosic biomass have become its significant advantages as a biomass raw material to produce aviation alternative fuels. Based on the latest research results of cellulosic biomass, the process parameters and yield of the key process units for the production of jet fuel precursor (furfural (FF), 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA)) from cellulosic biomass were studied in depth in this paper. Through Aspen Plus process simulation, the material flow and energy flow of FF and LA, FF and 5-HMF were studied and compared. The influence of different process parameters on the yield was obtained, and energy consumption analysis of the advantageous process flow was carried out, which provides a theoretical basis for increasing the yield of platform compounds and reducing energy consumption of production of alternative jet fuel from biomass.
[1] |
LI C Z, ZHAO X C, WANG A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. doi: 10.1021/acs.chemrev.5b00155
|
[2] |
CHHEDA J N, DUMESIC J A. An overview of dehydration, aldol-condensation and hydrogenation processes for the production of liquid alkanes from biomass-derived carbohydrates[J]. ChemInform, 2007, 38(39): 59-70.
|
[3] |
赵蒙蒙, 姜曼, 周祚万. 几种农作物秸秆的成分分析[J]. 材料导报, 2011, 25(16): 122-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201116034.htm
ZHAO M M, JIANG M, ZHOU Z W. The components analysis of several kinds of agricultural residues[J]. Materials Review, 2011, 25(16): 122-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201116034.htm
|
[4] |
SHI N, LIU Q Y, ZHANG Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry, 2013, 15(7): 1967. doi: 10.1039/c3gc40667a
|
[5] |
李丹, 文飚, 曹春昱. 植物原料中半纤维素预水解反应动力学及其机理研究进展[J]. 中国造纸, 2019, 38(2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201902016.htm
LI D, WEN B, CAO C Y. Research progress on hemicellulose pre-hydrolysis kinetics and mechanism of plant materials[J]. China Pulp & Paper, 2019, 38(2): 61-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201902016.htm
|
[6] |
龙金星, 徐莹, 王铁军, 等. 木质素催化解聚与氢解[J]. 新能源进展, 2014, 2(2): 83-88. doi: 10.3969/j.issn.2095-560X.2014.02.001
LONG J X, XU Y, WANG T J, et al. Catalytic depolymerization and hydrogenolysis of lignin[J]. Advances in New and Renewable Energy, 2014, 2(2): 83-88(in Chinese). doi: 10.3969/j.issn.2095-560X.2014.02.001
|
[7] |
HEITNER C, DIMMEL D, SCHMIDT J. Lignin and lignans: Advances in chemistry[M]. Boca Raton: CRC Press, 2010.
|
[8] |
VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94: 1-33.
|
[9] |
ENOMOTO K, HOSOYA T, MIYAFUJI H. High-yield production of 5-hydroxymethylfurfural from d-fructose, d-glucose, and cellulose by its in situ removal from the reaction system[J]. Cellulose, 2018, 25(4): 2249-2257. doi: 10.1007/s10570-018-1717-3
|
[10] |
张琦, 李宇萍, 陈伦刚, 等. 百吨/年规模生物质水相合成航油类烃过程的物质与能量转化[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201701003.htm
ZHANG Q, LI Y P, CHEN L G, et al. Material and energy conversion of integrated 100 t/a-scale bio-jet fuel-range hydrocarbon production system via aqueous conversion of biomass[J]. Journal of Tianjin University (Science and Technology), 2017, 50(1): 13-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201701003.htm
|
[11] |
许文娟. 木质纤维素类生物质水解制取糠醛及乙酰丙酸的研究[D]. 上海: 华东理工大学, 2016.
XU W J. Study on the production of furfural and levulinic acid from lignocellulosic biomass[D]. Shanghai: East China University of Science and Technology, 2016(in Chinese).
|
[12] |
PENG P, PENG F, BIAN J, et al. Isolation and structural characterization of hemicelluloses from the bamboo species Phyllostachys incarnata Wen[J]. Carbohydrate Polymers, 2011, 86(2): 883-890. doi: 10.1016/j.carbpol.2011.05.038
|
[13] |
XU F, LIU C F, GENG Z C, et al. Characterisation of degraded organosolv hemicelluloses from wheat straw[J]. Polymer Degradation and Stability, 2006, 91(8): 1880-1886. doi: 10.1016/j.polymdegradstab.2005.11.002
|
[14] |
袁梅婷, 翟华敏, 冯年捷, 等. 麦草自水解过程中半纤维素和木质素的变化特性[J]. 纤维素科学与技术, 2015, 23(2): 55-61. doi: 10.3969/j.issn.1004-8405.2015.02.009
YUAN M T, ZHAI H M, FENG N J, et al. Characterization of hemicelluloses and lignin change of wheat straw in autohydrolysis process[J]. Journal of Cellulose Science and Technology, 2015, 23(2): 55-61(in Chinese). doi: 10.3969/j.issn.1004-8405.2015.02.009
|
[15] |
SHUAI L, QUESTELL-SANTIAGO Y M, LUTERBACHER J S. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production[J]. Green Chemistry, 2016, 18(4): 937-943. doi: 10.1039/C5GC02489G
|
[16] |
赵绘婷, 刘振, 任秋鹤, 等. 玉米秸秆纤维素高效分离工艺研究[J]. 河南科学, 2019, 37(8): 1328-1333. doi: 10.3969/j.issn.1004-3918.2019.08.021
ZHAO H T, LIU Z, REN Q H, et al. Efficient separation technique of cellulose from corn straw[J]. Henan Science, 2019, 37(8): 1328-1333(in Chinese). doi: 10.3969/j.issn.1004-3918.2019.08.021
|
[17] |
张循海, 宋贺明, 贾宏葛, 等. 漆酶系统提取玉米秸秆中的纤维素[J]. 齐齐哈尔大学学报(自然科学版), 2020, 36(5): 43-44. doi: 10.3969/j.issn.1007-984X.2020.05.010
ZHANG X H, SONG H M, JIA H G, et al. The laccase extracting cellulose systems from corn straw[J]. Journal of Qiqihar University (Natural Science Edition), 2020, 36(5): 43-44(in Chinese). doi: 10.3969/j.issn.1007-984X.2020.05.010
|
[18] |
杨文玲, 王妨茶. 玉米秸秆纤维素提取工艺优化[J]. 安徽农业科学, 2019, 47(1): 198-201. doi: 10.3969/j.issn.0517-6611.2019.01.058
YANG W L, WANG F C. Optimization of cellulose extraction process of corn straw[J]. Journal of Anhui Agricultural Sciences, 2019, 47(1): 198-201(in Chinese). doi: 10.3969/j.issn.0517-6611.2019.01.058
|
[19] |
ZU S, LI W Z, ZHANG M J, et al. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime[J]. Bioresource Technology, 2014, 152: 364-370. doi: 10.1016/j.biortech.2013.11.034
|
[20] |
张扬, 王运红, 邓立红, 等. 稻秸半纤维素水解条件和水解液脱毒的研究[J]. 纤维素科学与技术, 2005, 13(2): 38-44. doi: 10.3969/j.issn.1004-8405.2005.02.007
ZHANG Y, WANG Y H, DENG L H, et al. Study of hemicellulose hydrolysis of the rice straw and hydrolysate detoxification[J]. Journal of Cellulose Science and Technology, 2005, 13(2): 38-44(in Chinese). doi: 10.3969/j.issn.1004-8405.2005.02.007
|
[21] |
LIU L, SUN J S, LI M, et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3pretreatment[J]. Bioresource Technology, 2009, 100(23): 5853-5858. doi: 10.1016/j.biortech.2009.06.040
|
[22] |
高文中, 张佳, 付存亭, 等. 玉米秸秆的水热酸处理工艺技术研究[J]. 化工设计通讯, 2019, 45(8): 80-81. doi: 10.3969/j.issn.1003-6490.2019.08.054
GAO W Z, ZHANG J, FU C T, et al. Study on hydrothermal acid treatment of corn stover[J]. Chemical Engineering Design Communications, 2019, 45(8): 80-81(in Chinese). doi: 10.3969/j.issn.1003-6490.2019.08.054
|
[23] |
XU Z P, LI W Z, DU Z J, et al. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone[J]. Bioresource Technology, 2015, 198: 764-771. doi: 10.1016/j.biortech.2015.09.104
|
[24] |
ZHANG T W, LI W Z, XU Z P, et al. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J]. Bioresource Technology, 2016, 209: 108-114. doi: 10.1016/j.biortech.2016.02.108
|
[25] |
ZHANG L X, YU H B, WANG P, et al. Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid[J]. Bioresource Technology, 2013, 130: 110-116. doi: 10.1016/j.biortech.2012.12.018
|
[26] |
LI X Y, XU R, LIU Q L, et al. Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: Effect of Brønsted to Lewis acid sites ratios[J]. Industrial Crops and Products, 2019, 141: 111759.
|
[27] |
KAUR I, NI Y H. A process to produce furfural and acetic acid from pre-hydrolysis liquor of kraft based dissolving pulp process[J]. Separation and Purification Technology, 2015, 146: 121-126.
|
[28] |
XING R, SUBRAHMANYAM A V, OLCAY H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933. doi: 10.1039/c0gc00263a
|
[29] |
BHAUMIK P, DHEPE P L. Exceptionally high yields of furfural from assorted raw biomass over solid acids[J]. RSC Advances, 2014, 4(50): 26215.
|
[30] |
XING R, QI W, HUBER G W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy & Environmental Science, 2011, 4(6): 2193.
|
[31] |
邓奥杰. 玉米芯两步法高效制备糠醛的研究[D]. 广州: 华南理工大学, 2016.
DENG A J. Study on high-efficiency preparation of furfural from corncob by two-step method[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
|
[32] |
HOU X D, FENG G J, YE M, et al. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment[J]. Bioresource Technology, 2017, 238: 139-146.
|
[33] |
CHEN L H, CHEN R, FU S Y. FeCl3 pretreatment of three lignocellulosic biomass for ethanol production[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8): 1794-1800.
|
[34] |
JAIN A, SHORE A M, JONNALAGADDA S C, et al. Conversion of fructose, glucose and sucrose to 5-hydroxymethyl-2-furfural over mesoporous zirconium phosphate catalyst[J]. Applied Catalysis A: General, 2015, 489: 72-76.
|
[35] |
SARAVANAN K, PARK K S, JEON S, et al. Aqueous phase synthesis of 5-hydroxymethylfurfural from glucose over large pore mesoporous zirconium phosphates: Effect of calcination temperature[J]. ACS Omega, 2018, 3(1): 808-820.
|
[36] |
ZHAO H B, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
|
[37] |
HOU Q D, ZHEN M N, LI W Z, et al. Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid[J]. Applied Catalysis B: Environmental, 2019, 253: 1-10.
|
[38] |
LI K, DU M M, JI P J. Multifunctional tin-based heterogeneous catalyst for catalytic conversion of glucose to 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5636-5644.
|
[39] |
LI M H, LI W Z, LIU Q Y, et al. A two-step conversion of corn stover into furfural and levulinic acid in a water/gamma-valerolactone system[J]. BioResources, 2016, 11(4): 8239-8256.
|
[40] |
曾珊珊, 林鹿, 刘娣, 等. 磷钨酸盐催化转化葡萄糖合成乙酰丙酸[J]. 化工学报, 2012, 63(12): 3875-3881. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201212025.htm
ZENG S S, LIN L, LIU D, et al. Catalytic conversion of glucose to levulinic acid by solid heteropolyacid salts[J]. CIESC Journal, 2012, 63(12): 3875-3881(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201212025.htm
|
[41] |
CHEN H, YU B, JIN S. Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2-SiO2-Sm2O3[J]. Bioresource Technology, 2011, 102(3): 3568-3570.
|
[42] |
卿青, 郭琪, 周琳琳, 等. SnCl4催化玉米芯高效制备乙酰丙酸的工艺研究[J]. 常州大学学报(自然科学版), 2018, 30(2): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY201802003.htm
QING Q, GUO Q, ZHOU L L, et al. Study on high efficiency catalytical preparation of levulinic acid from corncob by SnCl4[J]. Journal of Changzhou University(Natural Science Edition), 2018, 30(2): 14-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSY201802003.htm
|
[43] |
ZHAO Y, XU H, LU K F, et al. Experimental and kinetic study of arabinose conversion to furfural in renewable butanone-water solvent mixture catalyzed by lewis acidic ionic liquid catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 17088-17097.
|
[44] |
DUSSAN K, GIRISUTA B, LOPES M, et al. Conversion of hemicellulose sugars catalyzed by formic acid: Kinetics of the dehydration of D-xylose, l-arabinose, and D-glucose[J]. ChemSusChem, 2015, 8(8): 1411-1428.
|
[45] |
HONGSIRI W, DANON B, DE JONG W. The effects of combined catalysis of oxalic acid and seawater on the kinetics of xylose and arabinose dehydration to furfural[J]. International Journal of Energy and Environmental Engineering, 2015, 6(1): 21-30.
|
[46] |
LE GUENIC S, GERGELA D, CEBALLOS C, et al. Furfural production from d-xylose and xylan by using stable nafion NR50 and NaCl in a microwave-assisted biphasic reaction[J]. Molecules, 2016, 21(8): 1102.
|
[47] |
LI Y P, CHEN L G, ZHANG X H, et al. Process and techno-economic analysis of bio-jet fuel-range hydrocarbon production from lignocellulosic biomass via aqueous phase deconstruction and catalytic conversion[J]. Energy Procedia, 2017, 105: 675-680.
|
[48] |
章茹, 刘辉, 冯斐. 低聚木糖的膜分离浓缩工艺研究[J]. 食品工业, 2012, 33(9): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201209010.htm
ZHANG R, LIU H, FENG F. Study on the concentration of xylooligosaccharides by membrane separation technology[J]. The Food Industry, 2012, 33(9): 26-29(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201209010.htm
|