Fan Yuezu, Zhang Yinan, Ma Haokai, et al. Application of the hybrid BP/GA algorithm in simple integrated navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(05): 535-538. (in Chinese)
Citation: ZHANG Chendong, WANG Zhaorui, JIN Shengzhen, et al. High-precision positioning method based on SINS/RFID for trains in tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 632-638. doi: 10.13700/j.bh.1001-5965.2020.0647(in Chinese)

High-precision positioning method based on SINS/RFID for trains in tunnel

doi: 10.13700/j.bh.1001-5965.2020.0647
Funds:

National Key R & D Program of China 2016YFB0501900

National Natural Science Foundation of China U1931125

National Natural Science Foundation of China 11603041

More Information
  • Corresponding author: WANG Zhaorui, E-mail: zhaorui_w@nao.cas.cn
  • Received Date: 20 Nov 2020
  • Accepted Date: 26 Feb 2021
  • Publish Date: 20 Apr 2022
  • based on strapdown inertial navigation system (SINS) and radio frequency identification (RFID), an integrated positioning method is proposed for the position acquisition of high-speed trains in satellite-denied environment such as tunnels. The positioning accuracy of RFID tags is calculated by the response time model. The tags could also calibrate the attitude by adding actual railway information. Setting RFID tags on tunnel wall and at the same time combining with inertial navigation system provide continuous dynamic positioning data. Simulation results show that utilizing RFID tags in position calibration significantly decreases the error accumulation of inertial navigation system and increases positioning accuracy in 30 km tunnel. After the addition of attitude information, the positioning accuracy of the whole tunnel railway maintains at the level of meters in a variety of combinations of gyroscope performance and RFID tag interval, the best of which is 0.5 m.

     

  • [1]
    上官伟, 王韦舒, 张路, 等. 北斗导航RAIM技术在列车定位的应用研究[J]. 铁道学报, 2018, 40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011

    SHANGGUAN W, WANG W S, ZHANG L, et al. Application of BDS-based RAIM technology in train positioning[J]. Journal of the China Railway Society, 2018, 40(2): 73-81(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.02.011
    [2]
    WANG D S, LU Y J, ZHANG L, et al. Intelligent positioning for a commercial mobile platform in seamless indoor/outdoor scenes based on multi-sensor fusion[J]. Sensors, 2019, 19(7): 1696. doi: 10.3390/s19071696
    [3]
    王晓薇. 基于WIFI的隧道人员定位算法的分析与研究[D]. 武汉: 武汉邮电科学研究院, 2017: 18-24.

    WANG X W. Analysis and research of tunnel personnel location algorithm based on WIFI[D]. Wuhan: Wuhan Research Institute of Posts and Telecommunications, 2017: 18-24(in Chinese).
    [4]
    黄文轩. 在GPS不完备条件下RFID列车定位研究[J]. 铁路通信信号工程技术, 2018, 15(1): 25-29.

    HUANG W X. Research on RFID train location under incomplete GPS[J]. Railway Signalling & Communication Engineering, 2018, 15(1): 25-29(in Chinese).
    [5]
    陈伟. 卫星遮挡交通环境下车辆融合定位策略研究[D]. 南京: 东南大学, 2017: 81-97.

    CHEN W. Research on fusion positioning strategy for land vehicles in satellite signal-blocked traffic environments[D]. Nanjing: Southeast University, 2017: 81-97(in Chinese).
    [6]
    PEREIRA F L. Positioning systems for underground tunnel environments[D]. Portugal: Faculdade de Engenharia da Universidade do Porto, 2016: 79-115.
    [7]
    方旺盛, 高银. 狭长直隧道环境中WSN的RSSI加权质心定位算法[J]. 传感技术学报, 2014, 27(2): 247-251. doi: 10.3969/j.issn.1004-1699.2014.02.019

    FANG W S, GAO Y. A weighted centroid localization algorithm based on RSSI for wireless sensor network in straight narrow tunnel[J]. Chinese Journal of Sensors and Actuators, 2014, 27(2): 247-251(in Chinese). doi: 10.3969/j.issn.1004-1699.2014.02.019
    [8]
    SONG X, LI X, TANG W C, et al. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J]. Sensors, 2014, 14(12): 23095-23118. doi: 10.3390/s141223095
    [9]
    KO H, SHIM Y, KONG S H. Realization and demonstration of enhanced Korean high-speed train navigation system with noise filtering schemes[J]. International Journal of Control Automation and Systems, 2018, 16(9): 769-781.
    [10]
    CUI L, ZHANG Z H, GAO N, et al. Radio frequency identification and sensing techniques and their applications-A review of the state-of-the-art[J]. Sensors, 2019, 19(18): 4012. doi: 10.3390/s19184012
    [11]
    彭国旗. 基于RFID的车辆定位技术研究[D]. 长春: 长春理工大学, 2018: 7-18.

    PENG G Q. Research on vehicle positioning technology based on RFID[D]. Changchun: Changchun University of Science and Technology, 2018: 7-18(in Chinese).
    [12]
    ZHAO Y, LIU K H, MA Y T, et al. Similarity analysis based indoor localization algorithm with backscatter information of passive UHF RFID tags[J]. IEEE Sensors Journal, 2017, 17(1): 185-193. doi: 10.1109/JSEN.2016.2624314
    [13]
    MATBOULY H, ZANNAS K, DUROC Y, et al. Analysis and assessments of time delay constrains for passive RFID tag-sensor communication link: Application for rotation speed sensing[J]. IEEE Sensors Journal, 2017, 17(7): 2174-2181. doi: 10.1109/JSEN.2017.2662058
    [14]
    严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64.

    YAN G M, DENG Y. Review on practical Kalman filtering techniques in traditional integrated navigation system[J]. Navigation Positioning & Timing, 2020, 7(2): 50-64(in Chinese).
    [15]
    严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 78-105.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and principle of integrated navigation[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 78-105(in Chinese).
    [16]
    SAVAGE P G. Strapdown inertial navigation integration algorithm design Part 1: Attitude algorithms[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 19-28.
    [17]
    秦永元, 张洪钺, 王叔华. 卡尔曼滤波与组合导航原理[M]. 2版. 西安: 西北工业大学出版社, 2012: 5-67.

    QIN Y Y, ZHANG H Y, WANG S H. Kalman filtering and principle of integrated navigation[M]. 2nd ed. Xi'an: Northwestern Polytechnical University Press, 2012: 5-67(in Chinese).
  • Relative Articles

    [1]HOU Z Q,DAI N,CHENG M J,et al. Two-branch real-time semantic segmentation algorithm based on spatial information guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):19-29 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0980.
    [2]XIAHOU Chao, ZHOU Hao, CHEN Wanchun. Cooperative Optimal Analytical Guidance Method Considering Time-Varying Speed and Information Sharing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0707
    [3]LI W,CHENG X,LI Y J. Integrated security control of industrial cyber-physical systems based on new type ADETCS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2704-2716 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0734.
    [4]ZHAO W,LIU L,WANG K P,et al. Multimodal bidirectional information enhancement network for RGBT tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):596-605 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0395.
    [5]JI X,WU T X,YU T,et al. Power text information extraction based on multi-task learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2461-2469 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0683.
    [6]WU Kaijun, PU Zhuo. Object Detection for UAV Viewpoint Images based on Feature Information Complementation and Enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0190
    [7]ZHENG Shen-hai, LIU Xiao-xuan, WANG Rui-hao. Multi-organ Detection Method in Abdominal CT Images Based on Deep Differentiable Random Forest[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0769
    [8]HE Q L,WANG L H,CHEN Y J,et al. An automatic and real-time detection method of IoT in-the-wild vulnerability attack[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2195-2205 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0592.
    [9]DU Xiao-xin, HAO Tian-ru, WANG Bo, WANG Zhen-fei, ZHANG Jian-fei, JIN Mei. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0404
    [10]ZHANG N,CHENG D Q,KOU Q Q,et al. Person re-identification based on random occlusion and multi-granularity feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3511-3519 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0091.
    [11]DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665.
    [12]HUANG Jun, FAN Hao-dong, HONG Xu-dong, LI Xue. Semantic information guided multi-label image classification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0382
    [13]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [14]WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069.
    [15]ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211.
    [16]HU Haimiao, SHEN Liuqing, GAO Likun, LI Mingzhu. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291
    [17]DONG Zeshu, YUAN Feiniu, XIA Xue. Improved spatial and channel information based global smoke attention network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1471-1479. doi: 10.13700/j.bh.1001-5965.2021.0549
    [18]CHEN Weijing, WANG Weiying, JIN Qin. Image difference caption generation with text information assistance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1436-1444. doi: 10.13700/j.bh.1001-5965.2021.0526
    [19]XIE Xiangying, LAI Guangzhi, NA Zhixiong, LUO Xin, WANG Dong. Occlusion recognition algorithm based on multi-resolution feature auto-selection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1154-1163. doi: 10.13700/j.bh.1001-5965.2021.0289
    [20]ZHENG Yuxiang, HAO Pengyi, WU Dong'en, BAI Cong. Medical image segmentation based on multi-layer features and spatial information distillation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1409-1417. doi: 10.13700/j.bh.1001-5965.2021.0504
  • Cited by

    Periodical cited type(8)

    1. 陈钊渊,吴优,张娜,马超,王国仕,罗林波. 物联网恶意流量检测下基于改进Apriori算法的关联数据回溯分析. 自动化与仪器仪表. 2024(01): 52-55 .
    2. 曹伟康,林宏刚. 基于加权特征融合的物联网设备识别方法. 计算机科学. 2024(S2): 885-893 .
    3. Yu Zhang,Bei Gong,Qian Wang. BLS-identification: A device fingerprint classification mechanism based on broad learning for Internet of Things. Digital Communications and Networks. 2024(03): 728-739 .
    4. 李志华,王志豪. 基于LCNN和LSTM混合结构的物联网设备识别方法. 信息网络安全. 2023(06): 43-54 .
    5. 余长宏,陆雅,王海鑫,高明. 基于滑动时间窗的物联网设备流量分类算法. 计算机工程. 2023(07): 259-268 .
    6. 崔蕾,周湘贞,王枚. 基于区块链和雾计算的IoT轻量级身份验证和访问控制. 贵阳学院学报(自然科学版). 2023(03): 33-39 .
    7. 师小龙,陈浩林,王佳康,尹昱成,徐一楠,台永丰,杨睿,李燕飞. 基于随机森林的轨道交通成本关键要素辨识方法. 中国高新科技. 2022(06): 76-78 .
    8. 赵季红,乔琳琳,王颖. 基于多任务和卷积神经网络的业务识别算法. 西安邮电大学学报. 2021(01): 1-6 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views(929) PDF downloads(165) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return