Volume 48 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
HUO Weigang, LI Jilong, WANG Huifanget al. Civil aircraft long touchdown exceedance detection based on autoencoder and HMM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 560-568. doi: 10.13700/j.bh.1001-5965.2020.0649(in Chinese)
Citation: HUO Weigang, LI Jilong, WANG Huifanget al. Civil aircraft long touchdown exceedance detection based on autoencoder and HMM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 560-568. doi: 10.13700/j.bh.1001-5965.2020.0649(in Chinese)

Civil aircraft long touchdown exceedance detection based on autoencoder and HMM

doi: 10.13700/j.bh.1001-5965.2020.0649
Funds:

the Fundamental Research Funds for the Central Universities 3122019190

More Information
  • Corresponding author: HUO Weigang, E-mail: wghuo@cauc.edu.cn
  • Received Date: 23 Nov 2020
  • Accepted Date: 22 Jan 2021
  • Publish Date: 20 Apr 2022
  • The existing flight operation quality assurance (FOQA) standard only uses the integral distance of the ground speed to define the long touchdown exceedance (LTE), which cannot detect and explain the exceedance using multiple quick access recorder (QAR) parameters. The QAR samples with multiple parameters were segmented by the sliding window, and the segmented sample sets were generated according to the segmentation position. The representation of the QAR sample segmentation and the vector within each QAR segment was obtained by the long short-term memory (LSTM) networks autoencoder, and the representation vectors were clustered by K-means to realize the symbolization of the QAR samples and the QAR segments. The hidden Markov model (HMM) model was built by using the symbolic sequence of the QAR sample set of the normal flights, which was used to detect the flights with the LTE. The second HMM model was constructed from the symbolic sequences of the segment of the normal QAR samples and the QAR samples including the LTE. Then the Viterbi algorithm was used to determine the specific positon of the LTE in the QAR sample segment. Experimental results on real QAR data sets show that, compared with other multi-dimensional time series anomaly detection methods, the proposed method can not only effectively detect the LTE, but also obtain the outliers of multiple QAR parameters, which can assist domain experts to analyze the cause of the exceedance.

     

  • loading
  • [1]
    孙瑞山, 韩文律. 基于差异检验的飞行超限事件参数特征分析[J]. 中国安全生产科学技术, 2011, 7(2): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201102003.htm

    SUN R S, HAN W L. Anaylysis on parameters characteristics of flight exceedance events based on distinction test[J]. Journal of Safety Science and Technology, 2011, 7(2): 22-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201102003.htm
    [2]
    郑磊, 池宏, 邵雪焱. 基于QAR数据的飞行操作模式及其风险分析[J]. 中国管理科学, 2017, 25(10): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201710012.htm

    ZHENG L, CHI H, SHAO X Y. Pattern recognition and risk analysis for flight operations[J]. Chinese Journal of Management Science, 2017, 25(10): 109-118(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201710012.htm
    [3]
    WANG L, REN Y, WU C X. Effects of flare operation on landing safety: A study based on ANOVA of real flight data[J]. Safety Science, 2018, 102: 14-25. doi: 10.1016/j.ssci.2017.09.027
    [4]
    汪磊, 郭世广, 任勇. 基于飞行数据正态云的着陆操作风险评价方法[J]. 安全与环境学报, 2019, 19(5): 1555-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201905010.htm

    WANG L, GUO S G, REN Y. Landing operation risk evaluation based on the normal cloud of the flight data[J]. Journal of Safety and Environment, 2019, 19(5): 1555-1561(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201905010.htm
    [5]
    LI L, DAS S, HANSMAN R J, et al. Analysis of flight data using clustering techniques for detecting abnormal operations[J]. Journal of Aerospace Information Systems, 2015, 12(9): 587-598. doi: 10.2514/1.I010329
    [6]
    SHERIDAN K, PURANIK T G, MANGORTEY E, et al. An application of DBSCAN clustering for flight anomaly detection during the approach phase[C]//AIAA SciTech Forum. Reston: AIAA, 2020, 1851: 1-20.
    [7]
    EUGENE M, DYLAN M, JAMEY A, et al. Application of machine learning techniques to parameter selection for flight risk identification[C]//AIAA SciTech Forum. Reston: AIAA, 2020, 1850: 1-39.
    [8]
    LI L, HANSMAN R J, PALACIOS R, et al. Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 4557.
    [9]
    MELNYK I, MATTHEWS B, VALIZADEGAN H, et al. Vector autoregressive model-based anomaly detection in aviation systems[J]. Journal of Aerospace Information Systems, 2016, 13(4): 161-173. doi: 10.2514/1.I010394
    [10]
    MELNYK I, BANERJEE A, MATTHEWS B, et al. Semi-Markov switching vector autoregressive model-based anomaly detection in aviation systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1065-1074.
    [11]
    KEYGHOBADI H, SEYEDIN A. Abnormality detection in a landing operation using hidden Markov model[J]. Journal of Computer & Robotics, 2017, 10(1): 31-37.
    [12]
    LI J, PEDRYCZ W, JAMAL I. Multivariate time series anomaly detection: A framework of hidden Markov models[J]. Applied Soft Computing, 2017, 60: 229-240. doi: 10.1016/j.asoc.2017.06.035
    [13]
    JIA Y Z, XU M Q, WANG R X. Symbolic important point perceptually and hidden Markov model based hydraulic pump fault diagnosis method[J]. Sensors, 2018, 18(12): 4460. doi: 10.3390/s18124460
    [14]
    霍纬纲, 王慧芳. 基于自编码器和隐马尔可夫模型的时间序列异常检测方法[J]. 计算机应用, 2020, 40(5): 1329-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202005015.htm

    HUO W G, WANG H F. Time series anomaly detection method based on autoencoder and HMM[J]. Journal of Computer Applications, 2020, 40(5): 1329-1334(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202005015.htm
    [15]
    MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[C]//Anomaly Detection Workshop at 33rd International Conference on Machine Learning, 2016.
    [16]
    李航. 统计学习方法[M]. 2版. 北京: 清华大学出版社, 2019: 193-201.

    LI H. Statistical learning method[M]. 2nd ed. Beijing: Tsinghua University Press, 2019: 193-201(in Chinese).
    [17]
    SRIVASTAVA N, MANSIMOV E, SALAKHUDINOV R. Unsupervised learning of video representations using LSTMs[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015, 37: 843-852.
    [18]
    占欣. 基于QAR数据的冲/偏出跑道风险评估研究[D]. 天津: 中国民航大学, 2019: 15-20.

    ZHAN X. Research on risk evaluation of runway excursion based on QAR data[D]. Tianjin: Civil Aviation University of China, 2019: 15-20(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(648) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return