Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
WENG Huiyan, CAI Guobiao, ZHENG Hongru, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039(in Chinese)
Citation: WENG Huiyan, CAI Guobiao, ZHENG Hongru, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039(in Chinese)

Numerical simulation of effect of background pressure on electric propulsion plume field

doi: 10.13700/j.bh.1001-5965.2021.0039
Funds:

National Natural Science Foundation of China 51977003

More Information
  • Corresponding author: HE Bijiao, E-mail: hbj@buaa.edu.cn
  • Received Date: 21 Jan 2021
  • Accepted Date: 04 Apr 2021
  • Publish Date: 09 Apr 2021
  • The background pressure in vacuum chamber is an important parameter that affects the performance evaluation and plume field parameter diagnosis of electric thruster during ground tests. In this paper, a simulation analysis was made on the background pressure establishment method used in the numerical simulation of the plume field parameters of LIPS-200 ion thruster. The hybrid particle in cell (PIC) method and the direct simulation Monte Carlo (DSMC) method were used to deal with plasma motion and particle collisions in plume field. The electric propulsion plume was numerically simulated by using virtual particles and computed particles respectively, and compared with the vacuum environment. The results show that the number densities of neutral particles and charge-exchange ions are more than one order of magnitude higher than those in the vacuum environment due to the existence of background pressure. The virtual particles can greatly improve the computational efficiency, and the charge-exchange ion distribution in the plume field obtained is similar to that of the computed particle. However, the neutral particle distribution is quite different, so the influence of the wall and vacuum pump cannot be characterized by virtual particles.

     

  • loading
  • [1]
    KAMHAWI H, HAAG T, HUANG W, et al. Performance, facility pressure effects, and stability characterization tests of NASA's 12.5-kW Hall effect rocket with magnetic shielding thruster[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016: 4826.
    [2]
    NAKAYAMA Y, NAKAMURA M. Electric propulsion propellant flow within vacuum chamber[C]//34th International Electric Propulsion Conference, 2015: 2015-360.
    [3]
    NING Z X, CHU Y F, LIU X Y, et al. Effect of vacuum backpressure on discharge characteristics of hollow cathode[J]. Plasma Science and Technology, 2019, 21(12): 125402. doi: 10.1088/2058-6272/ab4364
    [4]
    MACDONALD-TENENBAUM N, PRATT Q, NAKLES M, et al. Background pressure effects on ion velocity distributions in an SPT-100 Hall thruster[J]. Journal of Propulsion and Power, 2019, 35(2): 1-10.
    [5]
    WALKER M L R, GALLIMORE A D. Neutral density map of Hall thruster plume expansion in a vacuum chamber[J]. Review of Scientific Instruments, 2005, 76(5): 053509. doi: 10.1063/1.1915011
    [6]
    CAI C P. A new gas kinetic model to analyze background flow effects on weak gaseous jet flows from electric propulsion devices[J]. Aerospace, 2017, 4(1): 5. doi: 10.3390/aerospace4010005
    [7]
    FRIEMAN J D. Characterization of background neutral flows in vacuum test facilities and impacts on Hall effect thruster operation[D]. Atlanta: Georgia Institute of Technology, 2017: 21-33.
    [8]
    VANGILDER D B, BOYD I D, KEIDAR M. Particle simulations of a Hall thruster plume[J]. Journal of Spacecraft and Rockets, 2000, 37(1): 129-136. doi: 10.2514/2.3536
    [9]
    BOYD I D. A review of Hall thruster plume modeling[J]. Journal of Spacecraft and Rockets, 2001, 38(3): 381-387. doi: 10.2514/2.3695
    [10]
    CHOI Y, KEIDAR M, BOYD I D. Particle simulation of plume flows from an anode-layer Hall thruster[J]. Journal of Propulsion and Power, 2008, 24(3): 554-561. doi: 10.2514/1.28384
    [11]
    李小平, 张天平, 贾艳辉, 等. 真空舱背景压力对离子推力器栅极系统工作性能影响的数值模拟[J]. 真空与低温, 2012, 18(2): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201202004.htm

    LI X P, ZHANG T P, JIA Y H, et al. Numerical simulation of the effect of vacuum facility background pressure on ion thruster grid system work performance[J]. Vacuum & Cryogenics, 2012, 18(2): 71-76(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201202004.htm
    [12]
    JIAN H H, CHU Y C, CAO H J, et al. Three-dimensional IFE-PIC numerical simulation of background pressure 's effect on accelerator grid impingement current for ion optics[J]. Vacuum, 2015, 116: 130-138. doi: 10.1016/j.vacuum.2015.03.011
    [13]
    KORKUT B, LEVIN D A, TUMUKLU O. Simulations of ion thruster plumes in ground facilities using adaptive mesh refinement[J]. Journal of Propulsion and Power, 2017, 33(3): 681-696. doi: 10.2514/1.B35958
    [14]
    王军伟, 张磊, 龚洁, 等. 基于粒子模拟的舱内布局对霍尔推进器真空羽流的影响[J]. 航空动力学报, 2020, 35(9): 1988-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202009021.htm

    WANG J W, ZHANG L, GONG J, et al. Effect of cabin layout on vacuum plume of Hall thruster based on particle simulation[J]. Journal of Aerospace Power, 2020, 35(9): 1988-1994(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202009021.htm
    [15]
    ZHENG H R, CAI G B, WANG H Y, et al. Three-dimensional particle simulation of ion thruster plume flows with EX-PWS[J]. Plasma Science and Technology, 2018, 20(10): 105501. doi: 10.1088/2058-6272/aad5da
    [16]
    CAI G B, ZHENG H R, LIU L H, et al. Three-dimensional particle simulation of ion thruster plume impingement[J]. Acta Astronautica, 2018, 151: 645-654. doi: 10.1016/j.actaastro.2018.07.007
    [17]
    BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Oxford University Press, 1994.
    [18]
    DEBOER P C T. Electric probe measurements in the plume of an ion thruster[J]. Journal of Propulsion and Power, 1996, 12(1): 95-104. doi: 10.2514/3.23996
    [19]
    DALGARNO A, WILLIAMS A. The mobilities of ions in unlike gases[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1958, 250(982): 411-425.
    [20]
    RAPP D, FRANCIS W E. Charge exchange between gaseous ions and atoms[J]. The Journal of Chemical Physics, 1962, 37(11): 2631-2645. doi: 10.1063/1.1733066
    [21]
    郑茂繁, 江豪成, 顾左, 等. 20 cm氙离子推力器3 000 h寿命实验[J]. 航天器环境工程, 2009, 26(4): 374-377. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200904028.htm

    ZHENG M F, JIANG H C, GU Z, et al. 3 000 h life test of 20 cm xenon ion thruster[J]. Spacecraft Environment Engineering, 2009, 26(4): 374-377(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200904028.htm
    [22]
    张建华, 李晶华, 尤凤仪, 等. 离子推力器羽流热效应仿真分析[J]. 北京航空航天大学学报, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802

    ZHANG J H, LI J H, YOU F Y, et al. Simulation analysis of ion thruster plume thermal effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2028-2034(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0802
    [23]
    王文龙, 周建平, 蔡国飙. 内置式深冷泵抽速计算及数值模拟研究[J]. 真空科学与技术学报, 2012, 32(5): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm

    WANG W L, ZHOU J P, CAI G B. Direct simulation Monte Carlo study of pumping speed of internal cryogenic fins[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(5): 85-89(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(371) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return