Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
DU Mo, MENG Bao, PAN Feng, et al. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045(in Chinese)
Citation: DU Mo, MENG Bao, PAN Feng, et al. Optimal design of printed circuit heat exchanger considering manufacturing constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1994-2005. doi: 10.13700/j.bh.1001-5965.2021.0045(in Chinese)

Optimal design of printed circuit heat exchanger considering manufacturing constraints

doi: 10.13700/j.bh.1001-5965.2021.0045
Funds:

Fund in the Field of Decoration and Development 61409230213

More Information
  • Corresponding author: MENG Bao, E-mail: mengbao@buaa.edu.cn
  • Received Date: 24 Jan 2021
  • Accepted Date: 28 May 2021
  • Publish Date: 15 Jun 2021
  • Aiming at the integrated design and manufacturing of micro-channel structure parameters for printed circuit heat exchanger (PCHE), the performance optimization research of heat exchangers considering manufacturing constraints is carried out. Through fluid simulation, the influence of flow channel width, depth, and aspect ratio on temperature distribution, pressure loss, and heat transfer coefficient is analyzed. A multi-objective genetic algorithm (MOGA) is used to establish a multi-variable and multi-objective optimization simulation model for heat transfer performance. The results of the performance simulation are used to establish the microchannel structure rolling forming process, and the manufacturing constraints are obtained. The manufacturing constraints are fed back to the performance optimization simulation model. Consequently, the micro-channel design parameters with a width of 0.29 mm and a depth of 0.39 mm are obtained, and the feasibility of the optimization method was verified by the roll-to-roll (R2R) process test. The designed method of heat-exchanger optimization considering manufacturing constraints introduce process constraints in the stage of performance optimization design, and is proved an effective measure to achieve the integrated design and manufacture of heat exchangers.

     

  • loading
  • [1]
    张文毓. 印刷电路板式换热器的研究与应用[J]. 上海电气技术, 2019, 12(4): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202203021.htm

    ZHANG W Y. Research and application of printed circuit plate heat exchanger[J]. Journal of Shanghai Electric Technology, 2019, 12(4): 64-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202203021.htm
    [2]
    MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review[J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-101. doi: 10.1016/j.cja.2020.03.028
    [3]
    KIM I H, NO H C. Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs[J]. Nuclear Engineering and Design, 2012, 243: 243-250. doi: 10.1016/j.nucengdes.2011.11.020
    [4]
    KIM I H, NO H C, LEE J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. doi: 10.1016/j.nucengdes.2009.07.005
    [5]
    KIM I H, SUN X. CFD study and PCHE design for secondary heat exchangers with FLiNaK-Helium for SmAHTR[J]. Nuclear Engineering and Design, 2014, 270: 325-333. doi: 10.1016/j.nucengdes.2014.02.003
    [6]
    JEON S, BAIK Y J, CHAN B, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle[J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. doi: 10.1016/j.ijheatmasstransfer.2016.06.091
    [7]
    刘生晖, 黄彦平, 郎雪梅, 等. 基于流动和传热关联式的印刷电路板式换热器的几何设计[J]. 核动力工程, 2016, 37(3): 106-109. doi: 10.13832/j.jnpe.2016.03.0106

    LIU S H, HUANG Y P, LANG X M, et al. Geometric design of printed circuit plate heat exchanger based on flow and heat transfer correlation[J]. Nuclear Power Engineering, 2016, 37(3): 106-109(in Chinese). doi: 10.13832/j.jnpe.2016.03.0106
    [8]
    刘阳鹏, 徐国强, 李海旺, 等. 宽高比对微小通道空气流动换热特性影响实验[J]. 北京航空航天大学学报, 2015, 41(7): 1253-1258. doi: 10.13700/j.bh.1001-5965.2014.0524

    LIU Y P, XU G Q, LI H W, et al. Experimental study on the influence of width to height ratio on heat transfer characteristics of air flow in micro channels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1253-1258(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0524
    [9]
    潘旭, 姜未汀, 黄永帅, 等. 板式换热器结构参数优化设计[J]. 制冷技术, 2017, 37(6): 62-66. doi: 10.3969/j.issn.2095-4468.2017.06.205

    PAN X, JIANG W T, HUANG Y S, et al. Optimization design of structural parameters of plate heat exchanger[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 62-66(in Chinese). doi: 10.3969/j.issn.2095-4468.2017.06.205
    [10]
    PAN X, ZHANG S, JIANG Y G, et al. Key parameters effects and design on performances of hydrogen/helium heat exchanger for SABRE[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21976-21989. doi: 10.1016/j.ijhydene.2017.07.060
    [11]
    HOU Y Q, TANG G H. Thermal-hydraulic-structural analysis and design optimization for micron-sized printed circuit heat exchanger[J]. Journal of Thermal Science, 2019, 28(2): 252-261. doi: 10.1007/s11630-018-1062-8
    [12]
    YANG Y, LI H Z, YAO M Y, et al. Optimizing the size of a printed circuit heat exchanger by multi-objective genetic algorithm[J]. Applied Thermal Engineering, 2020, 167: 114811. doi: 10.1016/j.applthermaleng.2019.114811
    [13]
    GUNNASEGARAN P, MOHAMMED H A, SHUAIB N H, et al. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes[J]. International Communications in Heat and Mass Transfer, 2010, 37: 1078-1086. doi: 10.1016/j.icheatmasstransfer.2010.06.014
    [14]
    WANG H T, CHEN Z H, GAO J G. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107: 870-879. doi: 10.1016/j.applthermaleng.2016.07.039
    [15]
    HIRT G, THOME M. Rolling of functional metal licsurface structures[J]. CIRP Annals Manufacturing Technology, 2008, 57(1): 351-356.
    [16]
    HIRT G, THOME M. Large area rolling of function almetallic micro structures[J]. Production Engineering, 2007, 1(4): 351-356. doi: 10.1007/s11740-007-0067-z
    [17]
    SHIMOYAMA K, YOKOYAMA S, KANEKO S, et al. Effect of grooved roll profiles on microstructure evolutions of AZ31 sheets in periodical straining rolling process[J]. Materials Science and Engineering, 2014, 611(31): 58-68.
    [18]
    NG M K, FAN Z Y, GAO R, et al. Characterization of electrically assisted micro-rolling for surface texturing using embedded sensor[J]. CIRP Annals Manufacturing Technology, 2014, 63(1): 269-272. doi: 10.1016/j.cirp.2014.03.021
    [19]
    王传果. 板材表面微沟槽滚压成形工艺研究[D]. 长春: 吉林大学, 2016: 39-65.

    WANG C G. Research on fabrication of bionic composite materials with hierarchical structure by using ice-templating[D]. Changchun: Jilin University, 2016: 39-65(in Chinese).
    [20]
    陈鹏宇, 程利东, 王春举, 等. 薄板曲面微结构电流辅助滚压成形工艺研究[J]. 塑性工程学报, 2019, 26(2): 79-84. doi: 10.3969/j.issn.1007-2012.2019.02.010

    CHEN P Y, CHENG L D, WANG C J, et al. Electrically-assisted rolling process of curved thin foil micro-features[J]. Journal of Plasticity Engineering, 2019, 26(2): 79-84(in Chinese). doi: 10.3969/j.issn.1007-2012.2019.02.010
    [21]
    AKHIL B, VISHWESH M, NAISHADH G, et al. Evolution of microstructure and mechanical properties of Ti6Al4V alloy by multiple passes of contrained groove pressing at elevated temperature[J]. Journal of Materials Processing Technology, 2021, 288: 116891. doi: 10.1016/j.jmatprotec.2020.116891
    [22]
    连之伟, 孙德兴. 热质交换原理与设计[M]. 3版. 北京: 中国建筑工业出版社, 2011: 190-250.

    LIAN Z W, SUN D X. Principle and design of heat and mass exchange[M]. 3rd ed. Beijing: China Construction Industry Press, 2011: 190-250(in Chinese).
    [23]
    SHAH R K. Compact heat exchanger surface selection methods[C]//International Heat Transfer Conference, 1978: 193-199.
    [24]
    杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 100-160.

    YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 100-160(in Chinese).
    [25]
    TAHAMI V F, ASL Z A. Numerical and experimental investigation of T-shape fillet welding of AISI 304 stainless steel plates[J]. Materials and Design, 2013, 47: 615-623. doi: 10.1016/j.matdes.2012.12.064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(6)

    Article Metrics

    Article views(497) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return