Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
GONG Xiaoquan, WU Xiaojun, TANG Jing, et al. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046(in Chinese)
Citation: GONG Xiaoquan, WU Xiaojun, TANG Jing, et al. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046(in Chinese)

Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method

doi: 10.13700/j.bh.1001-5965.2021.0046
Funds:

National Natural Science Foundation of China 11902343

National Numerical Wing Tunnel 

More Information
  • Corresponding author: WU Xiaojun, E-mail: huang7766@sina.com
  • Received Date: 25 Jan 2021
  • Accepted Date: 23 Mar 2021
  • Publish Date: 19 Apr 2021
  • The discontinuous Galerkin (DG) method has been widely studied and applied because of its high-order accuracy and applicability to the unstructured grid. However, it still has problems such as poor convergence and limited robustness in numerical simulation flowfield with strong discontinuity. This problem is exacerbated by the uniformly distributed grid, which results in poor shock resolution. In order to solve the problem, an r-grid adaptive method was developed to aggregation and refinement grids in process of DG numerical simulation. The normalized pressure of grid points was taken as an important weight to calculate the driving force of grid points. At the same time, the ratio of the displacement variation of grid points to the initial distance between grid points was taken as another important weight. A Venkatakrishnan limiter suitable for DG was developed. Numerical results of interaction between two parallel NACA0012 airfoils and interaction between two parallel cylinders showed that the DG method based on r-grid adaptation can capture shock clearly and sharply, improve simulation accuracy, and has good convergence and robustness.

     

  • loading
  • [1]
    REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: LA-UR-73-479[R]. Los Alamos: Scientific Laboratory, 1973.
    [2]
    COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin methods: Theory, computation and applications[M]. Berlin: Springer, 2000.
    [3]
    PERSSON P O. Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems: AIAA 2013-3061[R]. Reston: AIAA, 2013.
    [4]
    HARTMANN R. Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow: AIAA 2012-0459[R]. Reston: AIAA, 2012.
    [5]
    MICHAEL Y, WANG Z J. A parameter-free generalized moment limiter for high order methods on unstructured grids: AIAA-2009-605[R]. Reston: AIAA, 2009.
    [6]
    ZHU J, ZHONG X H, SHU C W, et al. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter[J]. Communications in Computational Physics, 2016, 19(4): 944-969. doi: 10.4208/cicp.070215.200715a
    [7]
    BARTH T J, JESPERSEN D C. The design and application of upwind schemes on unstructured meshes[C]//27th Aerospace Sciences Meeting. Reston: AIAA, 1989.
    [8]
    VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
    [9]
    ZHU J, ZHONG X H, SHU C W, et al. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes[J]. Communications in Computational Physics, 2017, 21(3): 623-649. doi: 10.4208/cicp.221015.160816a
    [10]
    TODARELLO G, VONCK F, BOURASSEAU S, et al. Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates[J]. Journal of Computational Physics, 2016, 313: 799-819. doi: 10.1016/j.jcp.2016.02.063
    [11]
    唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6): 752-757. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201506007.htm

    TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 752-757(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201506007.htm
    [12]
    崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10): 2992-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610010.htm

    CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2992-3002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610010.htm
    [13]
    CHILA R J, KAMINSKI D A. Automated grid independence via unstructured adaptive refinement: AIAA 2006-3062[R]. Reston: AIAA, 2006.
    [14]
    MENIER V, LOSEILLEY A, ALAUZET F. CFD validation and adaptivity for viscous flow simulations[C]//7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014: 436-457.
    [15]
    TANG J, ZHANG J, LI B, et al. Unsteady flow simulation with mesh adaptation[J]. International Journal of Modern Physics B, 2020, 34(14): 204008.
    [16]
    KAREN L B, PETER A G, MICHAEL A P, et al. Parallel, gradient-based anisotropic mesh adaptation for re-entry vehicle configurations: AIAA 2006-3579[R]. Reston: AIAA, 2006.
    [17]
    吴泽艳, 王立峰, 武哲. 基于简单WENO-间断Galerkin的欧拉方程自适应计算[J]. 北京航空航天大学学报, 2016, 42(4): 806-814. doi: 10.13700/j.bh.1001-5965.2015.0237#viewType=Abstract

    WU Z Y, WANG L F, WU Z. Adaptive simple WENO limiter-discontinuous Galerkin method for Euler equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 806-814(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0237#viewType=Abstract
    [18]
    孙强, 吕宏强, 伍贻兆. 基于高阶物面近似的自适应间断有限元法欧拉方程数值模拟[J]. 空气动力学学报, 2015, 33(4): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201504002.htm

    SUN Q, LU H Q, WU Y Z. Adaptive discontinuous Galerkin method to solve Euler equations based on high-order approximative boundary[J]. Acta Aerodynamica Sinica, 2015, 33(4): 446-453(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201504002.htm
    [19]
    王利, 周伟江. 基于伴随方法的网格自适应DG方法[J]. 中国科学: 技术科学, 2017, 47(11): 1214-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201711010.htm

    WU L, ZHOU W J. An adjoint-based grid discontinuous Galerkin method[J]. Scientia Sinica Technologica, 2017, 47(11): 1214-1224(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201711010.htm
    [20]
    WOOPEN M, MAY G, SCHVTZ J. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3): 811-834.
    [21]
    FIDKOWSKI K J. A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [22]
    CEZE M, FIDKOWSKI K J. Drag prediction using adaptive discontinuous finite elements: AIAA 2013-0051[R]. Reston: AIAA, 2013.
    [23]
    CHAND K K, LEE K D. Adaptation of structured grids with redistribution and embedding[C]//Fluid Dynamics Conference. Reston: AIAA, 1999.
    [24]
    QIN N, ZHU Y. Grid adaptation for shock/turbulent boundary layer interaction: AIAA 98-0227[J]. Reston: AIAA, 1998.
    [25]
    马明生, 龚小权, 邓有奇, 等. 一种适用于非结构网格的间断Galerkin有限元LU-SGS隐式方法[J]. 西北工业大学学报, 2016, 34(5): 754-760. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201605003.htm

    MA M S, GONG X Q, DENG Y Q, et al. An implicit LU-SGS scheme for the discontinuous Galerkin method on unstructured grids[J]. Journal of Northwestern Polytechnical University, 2016, 34(5): 754-760(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201605003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)

    Article Metrics

    Article views(329) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return