Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
YANG Yuchen, ZHANG Zenghui, YAN Jianing, et al. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053(in Chinese)
Citation: YANG Yuchen, ZHANG Zenghui, YAN Jianing, et al. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053(in Chinese)

Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues

doi: 10.13700/j.bh.1001-5965.2021.0053
Funds:

National Natural Science Foundation of China 61273099

National Natural Science Foundation of China 61304030

More Information
  • Corresponding author: YANG Lingyu, E-mail: yanglingyu@buaa.edu.cn
  • Received Date: 31 Jan 2021
  • Accepted Date: 10 Feb 2021
  • Publish Date: 24 Feb 2021
  • Considering the underactuated hypersonic flight vehicles with strong uncertainty of the dual channel attitude control strategy, practical feedback-based dual-channel control schemes are given and the robustness analysis method based on the bounded perturbation analysis of eigenvalues is proposed. Firstly, two control schemes, namely the pole-assignment schemes and modes-decoupling scheme, are given to improve Dutch roll dynamics based on the approximate linearization approach and engineering constraints. Then, to evaluate the robustness of the closed-loop system for the uncertain parameters, the eigenvalue sensitivity matrix, the eigenvalue bounded-perturbation-matrix and eigenvalue bounded-perturbation index are proposed. Finally, simulations and analysis of the proposed schemes and methods are given based on the closed-loop six degree-of-freedom model with nominal parameters and perturbed parameters, respectively. Simulation results demonstrate that both schemes could solve the dual-channel control issue. The results also show that the perturbation analysis of eigenvalues could precisely evaluate the system robustness.

     

  • loading
  • [1]
    任章, 白辰. 高超声速飞行器飞行控制技术研究综述[J]. 导航定位与授时, 2015, 2(6): 1-6. doi: 10.3969/j.issn.2095-8110.2015.06.001

    REN Z, BAI C. The overview of difficulties and methods of hypersonic vehicle flight control[J]. Navigation Positioning and Timing, 2015, 2(6): 1-6(in Chinese). doi: 10.3969/j.issn.2095-8110.2015.06.001
    [2]
    XU B, SHI Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China: Information Sciences, 2015, 58: 1-19.
    [3]
    WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program: The hypersonic technology vehicle #2 (HTV-2) flight demonstration phase: AIAA 2008-2539[R]. Reston: AIAA, 2008: 104526.
    [4]
    SACHAN K, PADHI R. Nonlinear robust neuro-adaptive flight control for hypersonic vehicles with state constraints[J]. Control Engineering Practice, 2020, 102: 104526. doi: 10.1016/j.conengprac.2020.104526
    [5]
    ZHU S P, XU T, WEI C S, et al. Learning-based adaptive fault tolerant control for hypersonic flight vehicles with abrupt actuator faults and finite time prescribed tracking performance[J]. European Journal of Control, 2021, 58: 17-26. doi: 10.1016/j.ejcon.2020.12.003
    [6]
    ZHOU L L, LIU L, CHENG Z T, et al. Adaptive dynamic surface control using neural networks for hypersonic flight vehicle with input nonlinearities[J]. Optimal Control Applications and Methods, 2020, 41(6): 1904-1927. doi: 10.1002/oca.2584
    [7]
    YANG Y H, SHAO X L, SHI Y. Back-stepping robust control for flexible air-breathing hypersonic vehicle via α-filter-based uncertainty and disturbance estimator[J]. International Journal of Control Automation and Systems, 2021, 19(1): 1-14. doi: 10.1007/s12555-019-0324-x
    [8]
    WANG Z, BAO W, LI H. Second-order dynamic sliding-mode control for nonminimum phase underactuated hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3105-3112. doi: 10.1109/TIE.2016.2633530
    [9]
    史丽楠, 李惠峰, 张冉. 滑翔再入飞行器横侧向耦合姿态控制策略[J]. 北京航空航天大学学报, 2016, 42(1): 120-129. doi: 10.13700/j.bh.1001-5965.2015.0037

    SHI L N, LI H F, ZHANG R. Gliding reentry vehicle lateral/directional coupling attitude control strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 120-129(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0037
    [10]
    LI X Q, ZHOU J. Attitude tracking of the under-actuated reentry vehicle with actuator saturation[J]. Fire Control and Command Control, 2016, 41(12): 15-19.
    [11]
    YE L Q, ZONG Q, CRASSIDIS J L, et al. Output-redefinition-based dynamic inversion control for a nonminimum phase hypersonic vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3447-3457. doi: 10.1109/TIE.2017.2760246
    [12]
    KESHMIRI S, COLGREN R, MIRMIRANI M. Six DoF nonlinear equations of motion for a heneric hypersonic vehicle: AIAA 2007-6626[R]. Reston: AIAA, 2007.
    [13]
    SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976-984. doi: 10.2514/3.20932
    [14]
    吴森堂. 飞行控制系统[M]. 2版. 北京: 北京航空航天大学出版社, 2013: 99-101.

    WU S T. Flight control system[M]. 2nd ed. Beijing: Beihang University Press, 2013: 99-101(in Chinese).
    [15]
    RUDISILL C S. Derivatives of eigenvalues and eigenvectors for a general matrix[J]. AIAA Journal, 1974, 12(5): 721-722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(326) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return