Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHOU Yuhao, HE Zhenxue, LIANG Xinyi, et al. Optimization of XNOR/OR circuit area based on BABFA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2031-2039. doi: 10.13700/j.bh.1001-5965.2021.0056(in Chinese)
Citation: ZHOU Yuhao, HE Zhenxue, LIANG Xinyi, et al. Optimization of XNOR/OR circuit area based on BABFA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2031-2039. doi: 10.13700/j.bh.1001-5965.2021.0056(in Chinese)

Optimization of XNOR/OR circuit area based on BABFA

doi: 10.13700/j.bh.1001-5965.2021.0056
Funds:

National Natural Science Foundation of China 61232009

National Natural Science Foundation of China 61772053

National Natural Science Foundation of China 81571142

National Natural Science Foundation of China 62102130

Natural Science Foundation of Hebei Province F2020204003

Science and Technology Project of Hebei Education Department BJ2019008

Introducing Talent Research Project of Hebei Agricultural University YJ201829

Central Government Guides Local Science and Technology Development Fund Project 226Z0201G

More Information
  • Corresponding author: HE Zhenxue, E-mail: hezhenxue@buaa.edu.cn
  • Received Date: 02 Feb 2021
  • Accepted Date: 12 Mar 2021
  • Publish Date: 30 Mar 2021
  • XNOR/OR-based fixed polarity Reed-Muller (FPRM) circuit area optimization is one of the current research hotspots in the field of integrated circuit design. However, the existing XNOR/OR-based FPRM circuit area optimization method has problems such as poor optimization effect and low optimization efficiency. Since XNOR/OR-based FPRM circuit area optimization is a combinatorial optimization problem, a binary adaptive bacterial foraging algorithm (BFA) is first proposed. The algorithm adds a probability model to the replication operation to improve the diversity of the population, and uses fuzzy rules to modify the replication probability and migration rate to improve the convergence speed of the algorithm. This algorithm allows bacteria to search in the neighborhood, replacing the repulsion operation in the quorum sensing mechanism of bacteria, and bacteria no longer need to sense the influence of other individual positions on it. In addition, an XNOR/OR-based FPRM circuit area optimization method is proposed. This method uses the proposed binary adaptive bacterial foraging algorithm to search for the FPRM circuit with the smallest circuit area. The experimental results based on the MCNC Benchmark circuit show that the maximum area optimization rate reaches 18%, and the maximum time saving rate reaches 46%.

     

  • loading
  • [1]
    PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67. doi: 10.1109/MCS.2002.1004010
    [2]
    SUPRIYONO H, TOKHI M O. Bacterial foraging algrithm with adaptable chemotactic step size[C]//International Conference on Computational Intelligence, Communication Systems and Networks. Piscataway: IEEE Press, 2010: 72-77.
    [3]
    MAJHI B, MAJHI R, PANDA G, et al. Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques[J]. Expert Systems with Application, 2009, 36(6): 10097-10104. doi: 10.1016/j.eswa.2009.01.012
    [4]
    TREATY M, MISHAP S. Bacteria foraging-based solution to optimize both real power loss and voltage stability limit[J]. IEEE Transactions on Power Systems, 2007, 22(1): 240-248. doi: 10.1109/TPWRS.2006.887968
    [5]
    AMARESH S. Estimation of minimum energy consumption index in a protected farm using bacteria foraging optimization algorithm: Estimation of minimum energy consumption index in protected farms[J]. International Journal of Energy Optimization and Engineering, 2019, 8(3): 1-19. doi: 10.4018/IJEOE.2019070101
    [6]
    LIU C F, WANG J F, JOSEPH Y. Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning[J]. Applied Soft Computing, 2018, 62: 602-618. doi: 10.1016/j.asoc.2017.10.034
    [7]
    CAI H Y, RAN L Q, ZOU L D, et al. Heuristic hybrid bacterial foraging algorithm for the pose detection of backlight units[J]. Automatic Control and Computer Sciences, 2020, 54(3): 229-237. doi: 10.3103/S0146411620030025
    [8]
    YE F L, LEE C Y, LEE Z J, et al. Incorporating particles warm optimization into improved bacterial foraging optimization algorithm applied to classify imbalanced data[J]. Symmetry, 2020, 12(2): 229. doi: 10.3390/sym12020229
    [9]
    ZHANG C, YU Y, WANG Y, et al. Takagisugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm[J]. International Journal of Fuzzy Systems, 2020, 22(4): 1314-1329. doi: 10.1007/s40815-020-00826-9
    [10]
    LIU Y, TIAN L, FAN L. The hybrid bacterial foraging algorithm based on many-objective optimizer[J]. Saudi Journal of Biological Sciences, 2020, 27(12): 3743-3752. doi: 10.1016/j.sjbs.2020.08.021
    [11]
    李珺. 细菌觅食优化算法的研究与改进[D]. 兰州: 兰州交通大学, 2018: 21-31.

    LI J. Research and improvement of optimization algorithm for bacterial foraging[D]. Lanzhou: Lanzhou Jiao Tong University, 2018: 21-31(in Chinese).
    [12]
    HU J J, JIN N F, LI P, et al. An improved bacterial foraging algorithm for multi-modal problems[J]. Journal of Physics, 2020, 1631(1): 012069.
    [13]
    邓莉, 鲁瑞华. 一种改进的抑制早熟收敛的模糊遗传算法[J]. 计算机科学, 2007, 34(11): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200711041.htm

    DENG L, LU R H. An improved fuzzy inheritance to inhibit precocious convergence algorithm[J]. Computer Science, 2007, 34(11): 150-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200711041.htm
    [14]
    李擎, 郑德玲, 唐勇, 等. 一种新的模糊遗传算法[J]. 北京科技大学学报, 2001, 23(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200101023.htm

    LI Q, ZHENG D L, TANG Y, et al. A new fuzzy genetic algorithm[J]. Journal of University of Science and Technology Beijing, 2001, 23(1): 85-89(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD200101023.htm
    [15]
    张会红, 汪迪生, 戴静. 基于模糊遗传算法的XNOR/OR展开式最小化研究[J]. 宁波大学学报, 2013, 26(3): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-NBDZ201303009.htm

    ZHANG H H, WANG D S, DAI J. XNOR/OR expansion minimization based on fuzzy genetic algorithm[J]. Journal of Ningbo University, 2013, 26(3): 35-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NBDZ201303009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(245) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return