Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Zhao, PENG Yiming, ZHOU Fuliang, et al. Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1951-1959. doi: 10.13700/j.bh.1001-5965.2021.0059(in Chinese)
Citation: ZHANG Zhao, PENG Yiming, ZHOU Fuliang, et al. Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1951-1959. doi: 10.13700/j.bh.1001-5965.2021.0059(in Chinese)

Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV

doi: 10.13700/j.bh.1001-5965.2021.0059
Funds:

National Defense Science Foundation for Distinguished Young Scholars 2018-JCJQ-ZQ-053

China Postdoctoral Science Foundation 2019M651827

Jiangsu Planned Project for Postdoctoral Research Funds 2018K042B

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • Corresponding author: WEI Xiaohui, E-mail: wei_xiaohui@nuaa.edu.cn
  • Received Date: 02 Feb 2021
  • Accepted Date: 11 May 2021
  • Publish Date: 15 Jun 2021
  • In order to solve the coupling nonlinear dynamics problem of the mechanical system and pneumatic system in the process of a new air-cooled launch device, an analysis method and optimization design method for the air-cooled launching dynamic characteristics of folding-rotor unmanned aerial vehicle (UAV) were proposed to satisfy the requirements of its structural form and launching technology. Taking a folding-rotor UAV as the research object, the dynamics model of the compressed gas launch system of UAV was established based on co-simulation, and the test prototype of the cold air launch system was built, the compressed gas launch experiment was completed to verify the accuracy of the simulation model. The effect of the main system parameters of UAV and air-cooled launcher on the dynamic performance of UAV launch is analyzed. Finally, the parameter optimization design is carried out for the system. Results show that the volume of the air cylinder and the inflation pressure are the key parameters influencing the dynamic characteristics of the UAV air conditioning launch, with air cylinder volume and air pressure, the largest launch speed and overload increasing, air cylinder volume increased from 15 L to 30 L, the largest launch speed increased by 52.7%, the largest launch overload grew by 60.9%, were positively correlated; When the charging pressure increases from 0.4 MPa to 0.7 MPa, the maximum launch velocity increases by 50.5% and the maximum launch overload increases by 69.9%. The launch angle has little effect on UAV launch performance and can be ignored.

     

  • loading
  • [1]
    包晓翔, 张云飞, 杨晓树. 新型折叠翼机构设计[J]. 北京航空航天大学学报, 2014, 40(8): 1127-1133. doi: 10.13700/j.bh.1001-5965.2013.0462

    BAO X X, ZHANG Y F, YANG X S. Design of a folding wing mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8): 1127-1133(in Chinses). doi: 10.13700/j.bh.1001-5965.2013.0462
    [2]
    孙文芳, 李建伟, 覃海鹰, 等. 国外折叠翼桨毂构型技术分析[J]. 直升机技术, 2019(3): 57-61. doi: 10.3969/j.issn.1673-1220.2019.03.013

    SUN W F, LI J W, QIN H Y, et al. Analysis of foreign folding rotor head configuration technology[J]. Helicopter Technique, 2019(3): 57-61(in Chinses). doi: 10.3969/j.issn.1673-1220.2019.03.013
    [3]
    何嘉琛. 可折叠翼式防空无人机设计[J]. 科技风, 2019(14): 15. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201914014.htm

    HE J C. Foldable rotor air defense UAV design[J]. Technology Wind, 2019(14): 15(in Chinses). https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201914014.htm
    [4]
    徐浩军, 邵伟平, 袁备. 折叠式共轴双旋翼桨叶操纵机构的设计[J]. 成组技术与生产现代化, 2015, 32(4): 8-11. doi: 10.3969/j.issn.1006-3269.2015.04.003

    XU H J, SHAO W P, YUAN B. Design for operating mechanism of foldable coaxial rotors[J]. Group Technology & Production Modernization, 2015, 32(4): 8-11(in Chinese). doi: 10.3969/j.issn.1006-3269.2015.04.003
    [5]
    张群峰, 闫盼盼, 黎军. 战斗机武器外挂投放与内埋投放比较[J]. 北京航空航天大学学报, 2017, 43(6): 1085-1097. doi: 10.13700/j.bh.1001-5965.2016.0497

    ZHANG Q F, YAN P P, LI J. Comparison between external store separation and buried store separation of fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1085-1097(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0497
    [6]
    黄国勤, 罗莎祁, 于今. 小型无人机气动肌腱式弹射系统动态仿真与优化[J]. 中国机械工程, 2019, 30(4): 448-454. doi: 10.3969/j.issn.1004-132X.2019.04.010

    HUANG G Q, LUO S Q, YU J. Dynamic simulation and optimization of pneumatic tendon ejection systems for small UAVs[J]. China Mechanical Engineering, 2019, 30(4): 448-454(in Chinese). doi: 10.3969/j.issn.1004-132X.2019.04.010
    [7]
    王金贵. 气体炮原理及技术[M]. 北京: 国防工业出版社, 2001: 35-36.

    WANG J G. Gas gun principle and technology[M]. Beijing: National Defence Industrial Press, 2001: 35-36(in Chinese).
    [8]
    赵俊利, 高跃飞. 气体炮实用内弹道技术研究[J]. 太原理工大学学报, 2003(3): 288-290. doi: 10.3969/j.issn.1007-9432.2003.03.017

    ZHAO J L, GAO Y F. Study on the interior ballistics of the gas gun[J]. Journal of Taiyuan University of Technology, 2003(3): 288-290(in Chinese). doi: 10.3969/j.issn.1007-9432.2003.03.017
    [9]
    MESLOH C T, THOMPSON L F. Evaluation of the FN 303 less lethal projectile[J]. Journal of Testing and Evaluation, 2006, 34(6): 574.
    [10]
    SADRAI S, MEECH J A, TROMANS D, et al. Energy efficient comminution under high velocity impact fragmentation[J]. Minerals Engineering, 2011, 24(10): 1053-1061. doi: 10.1016/j.mineng.2011.05.006
    [11]
    盖玉收, 石岩, 蔡茂林. 多源多出复杂压缩空气管网建模及能效分析[J]. 北京航空航天大学学报, 2013, 39(9): 1243-1248. https://bhxb.buaa.edu.cn/article/id/12732

    GAI Y S, SHI Y, CAI M L. Analysis on mathematical modeling for multi-source and multi-outlet complex compressed air network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1243-1248(in Chinses). https://bhxb.buaa.edu.cn/article/id/12732
    [12]
    万悦泉, 王少萍. 气动弹爆破过程性能仿真分析[J]. 北京航空航天大学学报, 2007, 33(6): 644-648. https://bhxb.buaa.edu.cn/article/id/9474

    WAN Y Q, WANG S P. Analysis and simulation on the dynamic process of the air blasting device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 644-648(in Chinses). https://bhxb.buaa.edu.cn/article/id/9474
    [13]
    赫雷, 尚兴超, 周克栋, 等. 一种压缩空气驱动的武器发射过程动力学分析[J]. 振动与冲击, 2014, 33(21): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201421036.htm

    HE L, SHANG X C, ZHOU K D, et al. Dynamic analysis for launching process of a compressed air-driving weapon[J]. Journal of Vibration and Shock, 2014, 33(21): 202-206(in Chinses). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201421036.htm
    [14]
    陶如意, 叶涛, 李鹏, 等. 小型物体冷气发射系统内弹道过程分析[J]. 弹道学报, 2012, 24(4): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201204019.htm

    TAO R Y, YE T, LI P, et al. Interior ballistic process for cool-gas launch system of minitype object[J]. Journal of Ballistics, 2012, 24(4): 82-85(in Chinses). https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201204019.htm
    [15]
    李建藩. 气压传动系统动力学[M]. 广州: 华南理工大学出版社, 1991: 53-79.

    LI J F. Pneumatic transmission system dynamics[M]. Guangzhou: South China University of Technology Press, 1991: 53-79(in Chinses).
    [16]
    GOMEZ E A, LOPEZ A L. Dynamic of a pneumatic system modeling simulation and experiments[J]. International Journal of Robotics and Automation, 1999, 14(1): 39-43.
    [17]
    徐炳辉. 气动手册[M] 上海: 上海科学技术出版社, 2005: 24-36.

    XU B H. Pneumatic manual[M]. Shanghai: Shanghai Science and Technology Press, 2005: 24-36(in Chinses).
    [18]
    冯勇, 徐振钦. 基于多岛遗传算法的火箭炮初始扰动综合优化分析[J]. 振动与冲击, 2014, 33(9): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201409033.htm

    FENG Y, XU Z Q. Comprehensive optimization of initial perturbation of a rocket system with multi-island genetic algorithms[J]. Journal of Vibration and Shock, 2014, 33(9): 168-172(in Chinses). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201409033.htm
    [19]
    MUNK D J, AULD D J, STEVEN G P, et al. On the benefits of applying topology optimization to structural design of aircraft components[J]. Structural and Multidisciplinary Optimization, 2019, 60(3): 1245-1266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(8)

    Article Metrics

    Article views(509) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return