Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LONG Yuan, DENG Xiaolong, YANG Xixiang, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068(in Chinese)
Citation: LONG Yuan, DENG Xiaolong, YANG Xixiang, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068(in Chinese)

Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network

doi: 10.13700/j.bh.1001-5965.2021.0068
Funds:

National Natural Science Foundation of China 6190021731

National Ministries Foundation of China GFZX04021403

National Ministries Foundation of China 20191A0X0233

NUDT Research Program ZK18-03-54

More Information
  • Corresponding author: DENG Xiaolong, E-mail: xiaolong.deng@outlook.com
  • Received Date: 06 Feb 2021
  • Accepted Date: 09 Apr 2021
  • Publish Date: 14 Apr 2021
  • The stratospheric wind field environment has an important influence on the flight performance of near space low speed aircraft. In this paper, the modeling and prediction methods of stratospheric regional wind field are investigated based on PSO-BP neural network. Firstly, the principal component analysis method is implemented to reduce the dimensions of the historical wind field data. Then, the BP neural network, which is trained by the processed data to predict the wind field, is optimized with particle swarm optimization (PSO) algorithm. Finally, the Biharmonic spline surface interpolation method using multi-point prediction wind fields is studied to construct the regional prediction wind field. Taking the 5-year historical wind field data of a certain place, comparative study of the wind field prediction model based on BP neural network and PSO-BP neural network is conducted. The results show that PSO algorithm, which is characterized global optimization, can improve BP neural network by avoiding the disadvantage of easily falling into local optimization, and enhance the prediction accuracy. The integration method of PSO-BP neural network prediction and Biharmonic spline surface interpolation can provide the prediction of the regional wind field. The proposed method can provide high precision regional prediction wind field for trajectory planning and station keeping of near space low speed aircraft.

     

  • loading
  • [1]
    赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm

    ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm
    [2]
    LI Y, SHENG Z, JING J R. Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data[J]. Earth Planet Physics, 2019, 3(5): 414-424. doi: 10.26464/epp2019040
    [3]
    WANG J, MENG X, LI C. Recovery trajectory optimization of the solar-powered stratospheric airship for the station-keeping mission[J]. Acta Astronautica, 2021, 178: 159-177. doi: 10.1016/j.actaastro.2020.08.016
    [4]
    顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ202002001.htm

    GU Y D. 100 years of scientific observation of balloons[J]. Modern Physics, 2020, 32(2): 3-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ202002001.htm
    [5]
    WEI J, MA R, HOU X, et al. Analysis of the thermodynamical property of super-pressure balloons[J]. Acta Mechanica, 2019, 230(4): 1355-1366. doi: 10.1007/s00707-017-2021-2
    [6]
    杨燕初, 张航悦, 赵荣. 零压式高空气球球形设计与参数敏感性分析[J]. 国防科技大学学报, 2019, 41(1): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901009.htm

    YANG Y C, ZHANG H Y, ZHAO R. Shape design of zero pre-ssure high altitude balloon and sensitivity analysis of key para-meters[J]. Journal of National University of Defense Technology, 2019, 41(1): 58-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901009.htm
    [7]
    聂春雨, 祝明, 郑泽伟, 等. 基于Q-Learning算法和神经网络的飞艇控制[J]. 北京航空航天大学学报, 2017, 43(12): 2431-2438. doi: 10.13700/j.bh.1001-5965.2016.0903

    NIE C Y, ZHU M, ZHENG Z W, et al. Airship control based on Q-Learning algorithm and neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2431-2438(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0903
    [8]
    郭建国, 周军. 临近空间低动态飞行器控制研究综述[J]. 航空学报, 2014, 35(2): 320-331. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402003.htm

    GUO J G, ZHOU J. Review of the control of low dynamic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 320-331(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402003.htm
    [9]
    史智广, 张小强, 李锦清, 等. 平流层浮空器保压指标对驻空性能的影响[J]. 航空学报, 2016, 37(6): 1833-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606014.htm

    SHI Z G, ZHANG X Q, LI J Q, et al. Effect of ground pressure-maintenance index on stagnation performance of stratospheric aerostats[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1833-1840(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606014.htm
    [10]
    程晨, 王晓亮. 平流层飞艇热敏感因素分析[J]. 浙江大学学报(工学版), 2020, 54(1): 202-212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202001024.htm

    CHENG C, WANG X L. Thermal sensitivity factors analysis of stratospheric airships[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(1): 202-212(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202001024.htm
    [11]
    姜兆宇, 贾庆山, 管晓宏. 多时空尺度的风力发电预测方法综述[J]. 自动化学报, 2019, 45(1): 51-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201901005.htm

    JIANG Z Y, JIA Q S, GUAN X H. A review of multi-temporal-and-spatial-scale wind power forecasting method[J]. Acta Automatica Sinica, 2019, 45(1): 51-71(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201901005.htm
    [12]
    邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 23-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908002.htm

    DENG X L, YANG X X, MA Z Y, et al. Review of important technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 23-36(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908002.htm
    [13]
    RAMESH S S, LIM K M, LEE H P, et al. Reduced-order modeling of stratospheric winds and its application in high-altitude balloon trajectory simulations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(6): 1753-1766.
    [14]
    胡亮, 顾明, 李黎. 基于本征正交分解的谱表示法模拟风场的误差[J]. 振动与冲击, 2011, 30(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201104006.htm

    HU L, GU M, LI L. Errors produced with proper orthogonal decomposition-based spectral representation method in wind velocity field simulation[J]. Journal of Vibration and Shock, 2011, 30(4): 12-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201104006.htm
    [15]
    RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69: 1485-1501.
    [16]
    孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm

    SUN B, YAO H T, LIU T. Short-term wind speed forecasting based on gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm
    [17]
    梁智, 孙国强, 俞娜燕, 等. 基于高斯过程回归和粒子滤波的短期风速预测[J]. 太阳能学报, 2020, 41(3): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm

    LIANG Z, SUN G Q, YU N Y, et al. Short-term wind speed forecasting based on Gaussian process regression and particle filter[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 45-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm
    [18]
    李魁, 邓小龙, 杨希祥, 等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685

    LI K, DENG X L, YANG X X, et al. Reduced order modeling and prediction of stratospheric winds based on the proper orthogonal decomposition method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0685
    [19]
    BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82.
    [20]
    ZHOU W, ZHOU P, WANG Y, et al. Station-keeping control of an underactuated stratospheric airship[J]. International Journal of Fuzzy Systems, 2019, 21(3): 715-732.
    [21]
    张泰华, 姜鲁华, 周江华. 放飞过程中平流层飞艇运动与受力分析[J]. 北京航空航天大学学报, 2018, 44(4): 691-699. doi: 10.13700/j.bh.1001-5965.2017.0227

    ZHANG T H, JIANG L H, ZHOU J H. Kinematic and mechanical analysis on launch process of stratospheric airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 691-699(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0227
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views(362) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return