Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
YANG Yang, WANG Weijie, WANG Zhou, et al. Momentum envelope analysis of magnetically suspended control sensitive gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2061-2069. doi: 10.13700/j.bh.1001-5965.2021.0071(in Chinese)
Citation: YANG Yang, WANG Weijie, WANG Zhou, et al. Momentum envelope analysis of magnetically suspended control sensitive gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2061-2069. doi: 10.13700/j.bh.1001-5965.2021.0071(in Chinese)

Momentum envelope analysis of magnetically suspended control sensitive gyroscope

doi: 10.13700/j.bh.1001-5965.2021.0071
Funds:

National Natural Science Foundation of China 52075545

More Information
  • Corresponding author: WANG Weijie, E-mail: wangwjie@126.com
  • Received Date: 07 Feb 2021
  • Accepted Date: 06 Jun 2021
  • Publish Date: 21 Jun 2021
  • Aiming at engineering application problems, the multi-degree-of-freedom angular momentum envelope model of magnetically suspended control and sensing gyroscope (MSCSG) is studied. Based on the mechanical structure of MSCSG, the characteristics of radial universal deflection of magnetic suspension rotor are analyzed. Axial 1-DOF Flywheel torque and radial 2-DOF gyroscope torque output mechanism of MSCSG are clarified. Based on the Lorentz force magnetic bearing (LFMB) principle, the linear relationship between the radial deflection torque and the control current is analyzed, which reveals the advantages of the MSCSG torque with high precision, high bandwidth and small amplitude. Considering rotor speed saturation, the MSCSG angular momentum envelope model is constructed based on deflection reconstruction and rotation matrix. The simulation shows that although radial deflection torque has a high bandwidth, small amplitude, and axial flywheel torque has a high precision and large magnitude. High bandwidth performance test of the MSCSG deflection torque is carried out, showing that MSCSG can output radial deflection torque whose frequency is greater than 100 Hz. It is shown that MSCSG has the prospect of strong micro-vibration suppression under high dynamic conditions and high precision attitude control.

     

  • loading
  • [1]
    REN Y, CHEN X C, CAI Y W, et al. Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4921-4932. doi: 10.1109/TIE.2017.2772161
    [2]
    王卫杰, 任元, 刘强, 等. 球面磁悬浮万向飞轮转子轮盘优化设计[J]. 航空学报, 2016, 37(9): 2874-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609025.htm

    WANG W J, REN Y, LIU Q, et al. Optimal design of rotary table for spherical rotor of magnetically suspending gambling flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2874-2883(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609025.htm
    [3]
    YU C M, WANG Z, REN Y, et al. MSCSG two degree of freedom attitude measurement method[J]. Journal of Physics: Conference Series, 2019, 1176(4): 042054.
    [4]
    YIN Z Y, CAI Y, LIU B, et al. Application of spherical magnetic bearing in magnetically suspended control and sensitive gyro[J]. Mathematical Problems in Engineering, 2020, 2020: 7698794.
    [5]
    杨倩. 动基座下双框架MSCMG磁轴承系统稳定性研究[D]. 北京: 北京航空航天大学, 2011: 17-21.

    YANG Q. Research on stability of magnetic bearing system for double gimbal magnetically suspended control moment gyroscope on moving base[D]. Beijing: Beihang University, 2011: 17-21(in Chinese).
    [6]
    任元, 王卫杰, 刘强, 等. 一种磁悬浮控制敏感陀螺: CN104613950B[P]. 2017-06-27.

    REN Y, WANG W J, LIU Q, et al. A kind of magnetically suspended control and sensing gyroscopic: CN104613950B[P]. 2017-06-27(in Chinese).
    [7]
    王鹏宇. 大挠性航天器振动抑制及姿态控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-2.

    WANG P Y. Vibration suppression and attitude control for flexible spacecraft[D]. Harbin: Harbin Institute of Technology, 2017: 1-2(in Chinese).
    [8]
    MARGULIES G AUBURN J N. Geometric theory of single-gimbal control moment gyro systems[J]. Journal of the Astronautical Sciences, 1978, 26(2): 159-191.
    [9]
    BONG W. Singularity analysis and visualization for single-gimbal control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 271-282. doi: 10.2514/1.9167
    [10]
    TANG L, XU S J. Geometric analysis of singularity for single-gimbal control moment gyro systems[J]. Chinese Journal of Aeronautics, 2005, 18(4): 9-17. https://www.sciencedirect.com/science/article/pii/S1000936111602483
    [11]
    王磊, 赵育善. 双框架控制力矩陀螺奇异分析及可视化[J]. 宇航学报, 2009, 30(2): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200902042.htm

    WANG L, ZHAO Y S. Singularity analysis and visualization of double-gimbaled control moment gyro systems[J]. Journal of Astronautics, 2009, 30(2): 613-619(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200902042.htm
    [12]
    刘锋. 金字塔构型变速控制力矩陀螺操纵律和参数优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2018: 18-20.

    LIU F. Optimization design of steering law and parameters for variable-speed control moment gyroscopes with pyramid configuration[D]. Harbin: Harbin Institute of Technology, 2018: 18-20(in Chinese).
    [13]
    李传江, 郭延宁, 马广富. 单框架控制力矩陀螺的奇异分析及操纵律设计[J]. 宇航学报, 2010, 31(10): 2346-2353. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201010020.htm

    LI C J, GUO Y N, MA G F. Singularity analysis and steering law design for single-gimbal control moment gyroscopes[J]. Journal of Astronautics, 2010, 31(10): 2346-2353(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201010020.htm
    [14]
    侯二永. 磁悬浮控制力矩陀螺结构设计与动力学分析[D]. 长沙: 国防科学技术大学, 2013: 27-28.

    HOU E Y. Structure design and dynamics analysis of magnetically suspended control moment gyroscope[D]. Changsha: National University of Defense Technology, 2013: 27-28(in Chinese).
    [15]
    宁欣, 韩邦成, 房建成. 基于干扰观测器的双框架变速率控制力矩陀螺解耦控制[J]. 机械工程学报, 2017, 53(10): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201710007.htm

    NING X, HAN B C, FANG J C. Disturbance observer based decoupling method of double-gimbaled variable speed control moment gyroscope[J]. Journal of Mechanical Engineering, 2017, 53(10): 52-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201710007.htm
    [16]
    魏孔明, 吴忠, 刘涛. 单框架控制力矩陀螺构型分析与奇异可视化[J]. 中国空间科学技术, 2013, 33(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201301003.htm

    WEI K M, WU Z, LIU T. Configuration analysis and singularity visualization of single gimbal control moment gyroscopes[J]. Chinese Space Science and Technology, 2013, 33(1): 21-29 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201301003.htm
    [17]
    焉宁. 敏捷机动小卫星姿态控制方法的仿真与实验研究[D]. 北京: 北京航空航天大学, 2011: 27-28.

    YAN N. Research on the simulation and experiment of attitude control method for agile small satellite[D]. Beijing: Beihang University, 2011: 27-28(in Chinese).
    [18]
    徐春雷. 飞轮调速系统驱动及控制实现[D]. 哈尔滨: 哈尔滨工业大学, 2012: 3-4.

    XU C L. The implementation of the drive and control of variable speed flywheel system[D]. Harbin: Harbin Institute of Techno-logy, 2012: 3-4(in Chinese).
    [19]
    鲍国亮. 陀螺飞轮实现航天器姿态测量与控制的机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2013: 18-21.

    BAO G L. Research on the measurement and control of the attitude of the spacecraft by gyrowheel[D]. Harbin: Harbin Institute of Technology, 2013: 18-21(in Chinese).
    [20]
    XIA C F, CAI Y W, REN Y. Steering law design for a magnetically suspended control and sensitive gyro cluster considering rotor tilt saturation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 4066-4076.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(359) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return