Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
BAI Wentao, LIU Guotian, ZOU Bo, et al. Performance comparison of helicopter inerting system under different temperature control modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073(in Chinese)
Citation: BAI Wentao, LIU Guotian, ZOU Bo, et al. Performance comparison of helicopter inerting system under different temperature control modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073(in Chinese)

Performance comparison of helicopter inerting system under different temperature control modes

doi: 10.13700/j.bh.1001-5965.2021.0073
Funds:

National Natural Science Foundation of China U1933121

Nanjing University of Aeronautics and Astronautics Postgraduate Innovation Base (Laboratory) Open Fund kfjj20200110

The Fundamental Research Funds for the Central Universities 

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • Corresponding author: FENG Shiyu, E-mail: shiyuf@nuaa.edu.cn
  • Received Date: 08 Feb 2021
  • Accepted Date: 04 May 2021
  • Publish Date: 18 May 2021
  • The airborne hollow fiber membrane inerting system of a helicopter is taken as the research subject.in this paper. Two temperature control systems using an electric valve and a frequency conversion fan have been designed. Based on the AMESim platform and the calculated data of the separation membrane mathematical model, an airborne inerting system was built. Under the flight mission, the temperature control effect of the two systems, the variation of the performance of the inerting system at different flight stages, and the influence of key parameters were all studied. The results show that: the system with an electronic valve can maintain the bleed air temperature at the desired level of 90℃ throughout the flight. After take-off, the nitrogen concentration of nitrogen enriched air (NEA) is maintained between 91.5%-96.4%, the required bleed air flow rate is maintained between 40 kg/h-243 kg/h, and the oxygen volume fraction on ullage can be reduced to 9% within 180 s and kept below 9% throughout the flight. Under the premise of the heat exchanger selection that meets the temperature control and inerting requirements during the high temperature stages such as climb, acceleration, and descent, the bleed air is overcooled to about 0℃ during the cruise stage of the system with the variable frequency fan, although the required bleed air flow rate dropped to 26 kg/h, the concentration of NEA is greatly reduced to 81%, and the oxygen volume fraction on ullage rose to 18%. The larger the flying speed, the greater the temperature drop of bleed air and the lower the cruising altitude, the lower the minimum cruising speed required to meet the temperature control effect are all valid during the cruise phase of the system with the variable frequency fan.

     

  • loading
  • [1]
    ANDERSON C, GRENICH A, TOLLE F, et al. Performance tests of two inert gas generator concepts for airplane fuel tank inerting[C]//19th Joint Propulsion Conference. Reston: AIAA, 1983: 1140.
    [2]
    KNIGHT T, RITTER J. The AH-64A nitrogen inerting system[C]//Aircraft Design Systems and Operations Meeting. Reston: AIAA, 1984: 2480.
    [3]
    刘小芳, 刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报, 2008, 18(3): 4-7. doi: 10.3969/j.issn.1673-7938.2008.03.002

    LIU X F, LIU W H. Outline of airborne oxygen supplied and its fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3): 4-7(in Chinese). doi: 10.3969/j.issn.1673-7938.2008.03.002
    [4]
    肖再华. 飞机燃油箱惰化[J]. 航空科学技术, 2005, 16(1): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX200501009.htm

    XIAO Z H. Inerting aircraft fuel tanks[J]. Aeronautical Science and Technology, 2005, 16(1): 31-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX200501009.htm
    [5]
    卢吉. 机载空分装置及惰化系统的理论研究[D]. 南京: 南京航空航天大学, 2012.

    LU J. Theoretical study of onboard air separation unit and inerting system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [6]
    邵垒, 刘卫华, 孙兵, 等. 中空纤维膜分离性能实验与预测[J]. 航空动力学报, 2015, 30(4): 800-806. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201504006.htm

    SHAO L, LIU W H, SUN B, et al. Experiment and prediction of separation performance of hollow fiber membrane[J]. Journal of Aerospace Power, 2015, 30(4): 800-806(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201504006.htm
    [7]
    闫红敏, 江平, 高永庭. 军用飞机机载制氮系统研究[J]. 沈阳航空工业学院学报, 2005, 22(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200505003.htm

    YAN H M, JIANG P, GAO Y T. Study on the on-board inert gas generator system of military aircraft[J]. Journal of Shenyang Institute of Aeronautcal Engineering, 2005, 22(5): 12-14(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200505003.htm
    [8]
    高秀峰, 刘卫华, 熊斌, 等. 飞机燃油箱冲洗惰化过程的理论研究[J]. 西安交通大学学报, 2010, 44(9): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201009005.htm

    GAO X F, LIU W H, XIONG B, et al. Theoretical study of washing inerting process in aircraft fuel tank[J]. Journal of Xi'an Jiaotong University, 2010, 44(9): 16-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201009005.htm
    [9]
    BURNS M, CAVAGE W M. Inerting of a vented aircraft fuel tank test article with nitrogen-enriched air: DOT/FAA/AR-01/6[R]. Washington, D.C. : Office of Aviation Research, 2001.
    [10]
    CAVAGE W, BOWMAN T. Modeling in-flight inert gas distribution in a 747 center wing fuel tank[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 4906.
    [11]
    CAVAGE W M. Modeling of in-flight fuel tank inerting for FAA OBIGGS research[R]. [S. l.]: [s. n.], 2007.
    [12]
    LI C Y, FENG S Y, CHEN C, et al. Performance analysis of aircraft fuel tank inerting system with turbocharger[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5217-5226.
    [13]
    黄雪飞, 刘文怡, 冯诗愚, 等. 单流和双流模式对燃油箱冲洗惰化过程影响[J]. 南京航空航天大学学报, 2018, 50(4): 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201804002.htm

    HUANG X F, LIU W Y, FENG S Y, et al. Influence of single-flow and dual-flow patterns on inerting process of fuel tank washing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(4): 435-441(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201804002.htm
    [14]
    冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm

    FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6): 1332-1339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm
    [15]
    蔡琰, 林贵平, 曾宇, 等. 中空纤维膜机载制氮装置的数学建模分析[J]. 航空动力学报, 2015, 30(9): 2100-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201509008.htm

    CAI Y, LIN G P, ZENG Y, et al. Mathematical modeling analysis of hollow fiber membrane onboard inert gas generation system[J]. Journal of Aerospace Power, 2015, 30(9): 2100-2107(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201509008.htm
    [16]
    陈思禄. 用于气体分离的膜材料制备与中空纤维膜过程评价[D]. 天津: 天津大学, 2018.

    CHEN S L. Fabrication of membranes and process evaluation of hollow fiber membranes for gas separation[D]. Tianjin: Tianjin University, 2018(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(309) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return