Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
HOU Ningning, LI Deng'ao, ZHAO Juminet al. Non-line-of-sight signal detection based on unsupervised learning and particle filtering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077(in Chinese)
Citation: HOU Ningning, LI Deng'ao, ZHAO Juminet al. Non-line-of-sight signal detection based on unsupervised learning and particle filtering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077(in Chinese)

Non-line-of-sight signal detection based on unsupervised learning and particle filtering

doi: 10.13700/j.bh.1001-5965.2021.0077
Funds:

National Natural Science Foundation of China 61772358

National Key R & D Program of China 2018YFB2200900

More Information
  • Corresponding author: LI Deng'ao, E-mail: lidengao@tyut.edu.cn
  • Received Date: 08 Feb 2021
  • Accepted Date: 23 Apr 2021
  • Publish Date: 11 May 2021
  • Global navigation satellite system (GNSS) is the most widely used positioning technology at present. Due to high-rise structures blocking the signal, the performance deterioration caused on by non-line-of-sight propagation still remains while studying the positioning problem in urban canyons. In order to solve this problem, the unsupervised learning-partinle filter (UL-PF) algorithm is proposed. In the satellite signal classification stage, the unsupervised learning classification method using kernel k-means clustering is used. In the positioning stage, the particle filter method optimized by clustering algorithm is used. The method first considers the inherent similarity of the sampled particles in the state space distribution. Secondly, it explores how to select one particle as the key particle in each cluster and increase the diversity of resampled particle sets by using time series correlation techniques. Experiments show that the average positioning accuracy of the proposed algorithm in urban is improved from 15 m to about 5 m, and the convergence time is reduced from 500 s to about 200 s.

     

  • loading
  • [1]
    曹建波, 王宇飞, 董军. 码相关参考波形技术在卫星导航信号中的多径抑制性能研究[J]. 现代导航, 2019, 10(2): 79-83. doi: 10.3969/j.issn.1674-7976.2019.02.001

    CAO J B, WANG Y F, DONG J. Research of multipath mitigation performance for CCRW technique in navigation signal[J]. Modern Navigation, 2019, 10(2): 79-83(in Chinese). doi: 10.3969/j.issn.1674-7976.2019.02.001
    [2]
    孙旭升. GPS多径抑制算法研究报告[J]. 信息通信, 2017, 30(2): 13-14. doi: 10.3969/j.issn.1673-1131.2017.02.007

    SUN X S. Research report on GPS multipath suppression algorithm[J]. Information & Communications, 2017, 30(2): 13-14 (in Chinese). doi: 10.3969/j.issn.1673-1131.2017.02.007
    [3]
    李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245. doi: 10.13700/j.bh.1001-5965.2017.0417

    LI W, ZHU Y L, WANG F, et al. GNSS multipath signal model and altimetry method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1239-1245(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0417
    [4]
    王蓉, 陈思, 胡伟锋, 等. 卫星导航定位误差仿真分析[J]. 计算机测量与控制, 2018, 26(10): 264-268. doi: 10.16526/j.cnki.11-4762/tp.2018.10.057

    WANG R, CHEN S, HU W F, et al. Simulation and analysis of navigation satellite positioning error[J]. Computer Measurement & Control, 2018, 26(10): 264-268(in Chinese). doi: 10.16526/j.cnki.11-4762/tp.2018.10.057
    [5]
    王冠宇, 孙蕊, 程琦. 城市峡谷中基于GPS双极化天线的定位方法[J]. 导航定位学报, 2020, 8(4): 13-19. doi: 10.3969/j.issn.2095-4999.2020.04.003

    WANG G Y, SUN R, CHENG Q. Positioning method based on GPS dual-polarized antenna in urban canyon environment[J]. Journal of Navigation and Positioning, 2020, 8(4): 13-19(in Chinese). doi: 10.3969/j.issn.2095-4999.2020.04.003
    [6]
    何通, 刘怡俊. 基于地图拟合的GNSS接收机抗多径干扰技术[J]. 电脑知识与技术, 2019, 15(6): 261-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201906108.htm

    HE T, LIU Y J. Anti-multipath interference technology of GNSS receiver based on map fitting[J]. Computer Knowledge and Technology, 2019, 15(6): 261-262(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201906108.htm
    [7]
    YUAN Y, SHEN F, LI X D. GPS multipath and NLOS mitigation for relative positioning in urban environments[J]. Aerospace Science and Technology, 2020, 107(12): 106-128.
    [8]
    MARANÒ S, GIFFORD W M, WYMEERSCH H, et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026-1035. doi: 10.1109/JSAC.2010.100907
    [9]
    YOZEVITCH R, MOSHE B B, WEISSMAN A. A robust GNSS LOS/NLOS signal classifier[J]. Navigation, 2016, 63(4): 429-442.
    [10]
    ZHU F, BA T E, ZHANG Y, et al. Terminal location method with NLOS exclusion based on unsupervised learning in 5G-LEO satellite communication systems[J]. International Journal of Satellite Communications and Networking, 2020, 38(5): 425-436.
    [11]
    FAN J C, AWAN A S. Non-line-of-sight identification based on unsupervised machine learning in ultra wideband systems[J]. IEEE Access, 2019, 7: 32464-32471.
    [12]
    陈唯实, 闫军, 李敬. 基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化[J]. 北京航空航天大学学报, 2018, 44(4): 700-708. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201804007.htm

    CHEN W S, YAN J, LI J. Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 700-708(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201804007.htm
    [13]
    李凯锋, 王保良, 黄志尧, 等. K-均值聚类在CCERT系统流型辨识中的应用[J]. 北京航空航天大学学报, 2017, 43(11): 2280-2285. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201711014.htm

    LI K F, WANG B L, HUANG Z Y, et al. Application of K-means clustering in flow pattern identification of CCERT system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2280-2285(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201711014.htm
    [14]
    NING F S, CHEN Y C. Combining a modified particle filter method and indoor magnetic fingerprint map to assist pedestrian dead reckoning for indoor positioning and navigation[J]. Sensors (Basel, Switzerland), 2019, 20(1): 185-193.
    [15]
    DE MIGUEL M Á, GARCÍA F, ARMINGOL J M. Improved LiDAR probabilistic localization for autonomous vehicles using GNSS[J]. Sensors (Basel, Switzerland), 2020, 20(11): 139-145.
    [16]
    YANG W M, SONG L, TEE C A T, et al. Unsupervised learning grouping-based resampling for particle filters[J]. IEEE Access, 2019, 7: 127265-127275.
    [17]
    LI T C, SATTAR T P, SUN S D. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters[J]. Signal Processing, 2012, 92(7): 1637-1645.
    [18]
    TZORTZIS G, LIKAS A. The global kernel k-means clustering algorithm[C]//2008 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2008: 10365371.
    [19]
    AGRAWAL A, GUPTA H. Global K-means (GKM) clustering algorithm: A survey[J]. International Journal of Computer Applications, 2013, 79(2): 20-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(260) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return