Citation: | HE Yujuan, LEI Yuchang, ZHANG Dengcheng, et al. Control moment characteristics of double-jet circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080(in Chinese) |
In order to study the possibility of flight control by circulation control technology, the control moment characteristics of steady jet circulation control airfoil in steady flow field are studied. The aerodynamic coefficient variation rules of virtual rudder and traditional rudder produced by single jet and double jet are compared and analyzed by numerical simulation, and the aerodynamic moment control characteristics are verified based on the rudderless aircraft Circulation Control SCAOON (CCSCAOON). The verification results show that the virtual rudder under single jet can provide the rolling and pitching torque needed by aircraft, the action mechanism is similar, and the control performance is better than that of the traditional rudder. Whether under single jet or double jet, the aerodynamic characteristics of circulation control airfoils at high angle of attack are poor, which limits the use of circulation control angle of attack. The lift-drag ratio and control torque characteristics of double jet are better than those of single jet. By adjusting the momentum coefficient of the lower jet port, the virtual rudder under double jet can effectively reduce the coupling effect of yaw moment, rolling moment and pitching moment.
[1] |
付志杰, 许和勇, 杜海, 等. 基于环量控制的虚拟舵面机翼气动特性计算研究[J]. 航空科学技术, 2020, 31(5): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005003.htm
FU Z J, XU H Y, DU H, et al. Investigation on flapless wing based on circulation control[J]. Aeronautical Science and Technology, 2020, 31(5): 11-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005003.htm
|
[2] |
中国科学院. 新型飞行器中的关键力学问题[M]. 北京: 科学出版社, 2018: 88-94.
Chinese Academy of Sciences. Key mechanical problems in new aircraft[M]. Beijing: Science Press, 2018: 88-94(in Chinese).
|
[3] |
ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
|
[4] |
JONES G S, JOSLIN R D. Applications of circulation control technology[M]. Reston: AIAA, 2006.
|
[5] |
ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 2015, 12(5): 457-463. doi: 10.2514/3.59824
|
[6] |
ENGLAR R J. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future[C]//Fluids 2000 Conference and Exhibit. Reston: AIAA, 2000: 2541.
|
[7] |
FIELDING J, LAWSON C, MARTINS-PIRES R, et al. Design, build and flight of the DEMON demonstrator UAV[C]//11th AIAA Aviation Technology, Integration and Operations (ATIO) Conference. Reston: AIAA, 2011: 6963.
|
[8] |
FRITH S, WOOD N. Investigation of dual circulation control surfaces for flight control[C]//2nd AIAA Flow Control Conference. Reston: AIAA, 2004: 2211.
|
[9] |
MILHOLEN W, JONES G, CHAN D. High-Reynolds number circulation control testing in the national transonic facility (invited)[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: 103.
|
[10] |
JONES G S, MILHOLEN W E, CHAN D T, et al. Development of the circulation control flow scheme used in the NTF semi-span FAST-MAC model[C]//31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 3048.
|
[11] |
JONES G. Development of the dual aerodynamic nozzle model for the NTF semi-span model support system[C]//29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011: 3170.
|
[12] |
LYNN K, RHEW R, JONES G, et al. High-Reynolds number active blowing semi-span force measurement system development[C]//28th Aerodynamic Measurement Technology, Ground Testing and Flight Testing Conference. Reston: AIAA, 2012: 3318.
|
[13] |
JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3044.
|
[14] |
HUTCHIN C R. NATO AVT-239 task group: Control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 280.
|
[15] |
张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学: 技术科学, 2012, 42(9): 1046-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201209008.htm
ZHANG P F, YAN B, DAI C F. Lift enhancement technology of airfoil controlled by synthetic jet circulation [J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201209008.htm
|
[16] |
张攀峰, 刘爱兵, 王晋军. 非定常等离子激励器诱导平板边界层的流动结构[J]. 中国科学: 技术科学, 2011, 41(4): 482-492. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201104010.htm
ZHANG P F, LIU A B, WANG J J. Flow structure of plate boundary layer induced by unsteady equal ion exciter [J]. Scientia Sinica (Technologica), 2011, 41(4): 482-492(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201104010.htm
|
[17] |
张艳华, 李林, 张登成, 等. 基于等离子体环量控制的翼型气动特性[J]. 强激光与粒子束, 2017, 29(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201706012.htm
ZHANG Y H, LI L, ZHANG D C, et al. Aerodynamics of airfoil based on plasma circulation control[J]. High Power Laser and Particle Beams, 2017, 29(6): 54-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201706012.htm
|
[18] |
ZHANG Y H, ZHANG D C, LI L, et al. Experimental study on aerodynamic properties of circulation control airfoil with plasma jet[C]//Asia-Pacific International Symposium on Aerospace Technology. Berlin: Springer, 2018: 985-995.
|
[19] |
李林, 张艳华, 张登成, 等. 激励器位置影响环量控制翼型气动特性的实验研究[J]. 高电压技术, 2018, 44(12): 4061-4070. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201812037.htm
LI L, ZHANG Y H, ZHANG D C, et al. Experimental study on effect of actuation position on circulation control airfoil aerodynamic characteristics[J]. High Voltage Engineering, 2018, 44(12): 4061-4070(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201812037.htm
|
[20] |
张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报(自然科学版), 2015, 16(1): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201501003.htm
ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(1): 10-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201501003.htm
|
[21] |
乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901015.htm
QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901015.htm
|
[22] |
XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2017, 56(2): 554-570.
|
[23] |
齐万涛, 吕新波, 伍智敏. 环量控制技术在飞机纵向俯仰控制中的应用[J]. 飞行力学, 2019, 37(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201902016.htm
QI W T, LYU X B, WU Z M. Application of circulation control technology on aircraft longitudinal pitch control[J]. Flight Dynamics, 2019, 37(2): 77-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201902016.htm
|
[24] |
张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术, 2020, 31(5): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005008.htm
ZHANG T R, LÜ X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science and Technology, 2020, 31(5): 50-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005008.htm
|
[25] |
王海洋. 基于环量控制的无人飞行器气动特性研究与飞行试验[D]. 南京: 南京航空航天大学, 2014.
WANG H Y. Research on aerodynamic characteristics and flight test of UAV based on circulation control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
|
[26] |
SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. http://www.onacademic.com/detail/journal_1000040913537810_f7b3.html
|
[27] |
孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202012013.htm
SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 190-199(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202012013.htm
|
[28] |
WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 282.
|
[29] |
JIRASEK A, CUMMINGS R M, SCHUETTE A, et al. The NATO STO AVT-201 task group on extended assessment of stability and control prediction methods for NATO air vehicles: Summary, conclusions and lessons learned[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 2394.
|