Zhao Tingdi. General Development Shell for Fault Diagnostic Expert System[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 358-361. (in Chinese)
Citation: HE Yujuan, LEI Yuchang, ZHANG Dengcheng, et al. Control moment characteristics of double-jet circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080(in Chinese)

Control moment characteristics of double-jet circulation control airfoil

doi: 10.13700/j.bh.1001-5965.2021.0080
More Information
  • Corresponding author: ZHANG Dengcheng, E-mail: dengcheng-zhang@163.com
  • Received Date: 19 Feb 2021
  • Accepted Date: 29 Mar 2021
  • Publish Date: 20 Dec 2021
  • In order to study the possibility of flight control by circulation control technology, the control moment characteristics of steady jet circulation control airfoil in steady flow field are studied. The aerodynamic coefficient variation rules of virtual rudder and traditional rudder produced by single jet and double jet are compared and analyzed by numerical simulation, and the aerodynamic moment control characteristics are verified based on the rudderless aircraft Circulation Control SCAOON (CCSCAOON). The verification results show that the virtual rudder under single jet can provide the rolling and pitching torque needed by aircraft, the action mechanism is similar, and the control performance is better than that of the traditional rudder. Whether under single jet or double jet, the aerodynamic characteristics of circulation control airfoils at high angle of attack are poor, which limits the use of circulation control angle of attack. The lift-drag ratio and control torque characteristics of double jet are better than those of single jet. By adjusting the momentum coefficient of the lower jet port, the virtual rudder under double jet can effectively reduce the coupling effect of yaw moment, rolling moment and pitching moment.

     

  • [1]
    付志杰, 许和勇, 杜海, 等. 基于环量控制的虚拟舵面机翼气动特性计算研究[J]. 航空科学技术, 2020, 31(5): 11-22.

    FU Z J, XU H Y, DU H, et al. Investigation on flapless wing based on circulation control[J]. Aeronautical Science and Technology, 2020, 31(5): 11-22(in Chinese).
    [2]
    中国科学院. 新型飞行器中的关键力学问题[M]. 北京: 科学出版社, 2018: 88-94.

    Chinese Academy of Sciences. Key mechanical problems in new aircraft[M]. Beijing: Science Press, 2018: 88-94(in Chinese).
    [3]
    ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [4]
    JONES G S, JOSLIN R D. Applications of circulation control technology[M]. Reston: AIAA, 2006.
    [5]
    ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 2015, 12(5): 457-463. doi: 10.2514/3.59824
    [6]
    ENGLAR R J. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future[C]//Fluids 2000 Conference and Exhibit. Reston: AIAA, 2000: 2541.
    [7]
    FIELDING J, LAWSON C, MARTINS-PIRES R, et al. Design, build and flight of the DEMON demonstrator UAV[C]//11th AIAA Aviation Technology, Integration and Operations (ATIO) Conference. Reston: AIAA, 2011: 6963.
    [8]
    FRITH S, WOOD N. Investigation of dual circulation control surfaces for flight control[C]//2nd AIAA Flow Control Conference. Reston: AIAA, 2004: 2211.
    [9]
    MILHOLEN W, JONES G, CHAN D. High-Reynolds number circulation control testing in the national transonic facility (invited)[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: 103.
    [10]
    JONES G S, MILHOLEN W E, CHAN D T, et al. Development of the circulation control flow scheme used in the NTF semi-span FAST-MAC model[C]//31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 3048.
    [11]
    JONES G. Development of the dual aerodynamic nozzle model for the NTF semi-span model support system[C]//29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011: 3170.
    [12]
    LYNN K, RHEW R, JONES G, et al. High-Reynolds number active blowing semi-span force measurement system development[C]//28th Aerodynamic Measurement Technology, Ground Testing and Flight Testing Conference. Reston: AIAA, 2012: 3318.
    [13]
    JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3044.
    [14]
    HUTCHIN C R. NATO AVT-239 task group: Control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 280.
    [15]
    张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学: 技术科学, 2012, 42(9): 1046-1053.

    ZHANG P F, YAN B, DAI C F. Lift enhancement technology of airfoil controlled by synthetic jet circulation [J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053(in Chinese).
    [16]
    张攀峰, 刘爱兵, 王晋军. 非定常等离子激励器诱导平板边界层的流动结构[J]. 中国科学: 技术科学, 2011, 41(4): 482-492.

    ZHANG P F, LIU A B, WANG J J. Flow structure of plate boundary layer induced by unsteady equal ion exciter [J]. Scientia Sinica (Technologica), 2011, 41(4): 482-492(in Chinese).
    [17]
    张艳华, 李林, 张登成, 等. 基于等离子体环量控制的翼型气动特性[J]. 强激光与粒子束, 2017, 29(6): 54-59.

    ZHANG Y H, LI L, ZHANG D C, et al. Aerodynamics of airfoil based on plasma circulation control[J]. High Power Laser and Particle Beams, 2017, 29(6): 54-59(in Chinese).
    [18]
    ZHANG Y H, ZHANG D C, LI L, et al. Experimental study on aerodynamic properties of circulation control airfoil with plasma jet[C]//Asia-Pacific International Symposium on Aerospace Technology. Berlin: Springer, 2018: 985-995.
    [19]
    李林, 张艳华, 张登成, 等. 激励器位置影响环量控制翼型气动特性的实验研究[J]. 高电压技术, 2018, 44(12): 4061-4070.

    LI L, ZHANG Y H, ZHANG D C, et al. Experimental study on effect of actuation position on circulation control airfoil aerodynamic characteristics[J]. High Voltage Engineering, 2018, 44(12): 4061-4070(in Chinese).
    [20]
    张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报(自然科学版), 2015, 16(1): 10-13.

    ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(1): 10-13(in Chinese).
    [21]
    乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145.

    QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145(in Chinese).
    [22]
    XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2017, 56(2): 554-570.
    [23]
    齐万涛, 吕新波, 伍智敏. 环量控制技术在飞机纵向俯仰控制中的应用[J]. 飞行力学, 2019, 37(2): 77-82.

    QI W T, LYU X B, WU Z M. Application of circulation control technology on aircraft longitudinal pitch control[J]. Flight Dynamics, 2019, 37(2): 77-82(in Chinese).
    [24]
    张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术, 2020, 31(5): 50-55.

    ZHANG T R, LÜ X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science and Technology, 2020, 31(5): 50-55(in Chinese).
    [25]
    王海洋. 基于环量控制的无人飞行器气动特性研究与飞行试验[D]. 南京: 南京航空航天大学, 2014.

    WANG H Y. Research on aerodynamic characteristics and flight test of UAV based on circulation control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [26]
    SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134.
    [27]
    孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 190-199.

    SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 190-199(in Chinese).
    [28]
    WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 282.
    [29]
    JIRASEK A, CUMMINGS R M, SCHUETTE A, et al. The NATO STO AVT-201 task group on extended assessment of stability and control prediction methods for NATO air vehicles: Summary, conclusions and lessons learned[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 2394.
  • Relative Articles

    [1]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [2]MA C,SHU B W,HUANG J T,et al. Knowledge mining of aircraft configuration design for sonic boom/aerodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):975-984 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0310.
    [3]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [4]LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0213.
    [5]WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0522.
    [6]HU Wenhua, LIU Wenju, WU Ruiqin, CHEN Sanya, FENG Jingjing, WU Xia. Model design and aerodynamic simulation of a fold-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0064
    [7]YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849.
    [8]ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0932.
    [9]CAO Mengda, ZHENG Mengzong, SU Guanting, PAN Tianyu, LI Zhiping, LI Qiushi. Study on the Unsteady Aerodynamic Characteristics of a Flexible Flapping Plate at Low Reynolds Numbers[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0235
    [10]XIAO L F,ZHOU L W,LI X D. Numerical simulation of deformed airfoil modal after blast shock wave[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):341-349 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0244.
    [11]WANG Y T,LAN Q S,ZHOU Z,et al. Design and aerodynamic analysis of blended wing body with variable camber technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1292-1307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0493.
    [12]WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0489.
    [13]SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0768.
    [14]ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530.
    [15]LIANG Jin-ze, PAN Tian-yu, ZHENG Meng-zong, PENG Lian-song, CAO Meng-da. Model design and aerodynamic characteristics analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0271
    [16]LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0738.
    [17]JIA Y,YANG Y T,WU J H. Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1156-1165 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0370.
    [18]WANG Zhen, ZHONG Wei, WANG Tong-guang, LI Xu-dong, ZHANG Hong-ying. Numerical simulation of unsteady aerodynamic characteristics of parafoil airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0184
    [19]GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243.
    [20]YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141
  • Cited by

    Periodical cited type(16)

    1. 张琴,蔡慧茹,兰明东,浦克,胡雄. 基于改进麻雀优化PID的波浪补偿控制方法. 工程科学与技术. 2024(01): 22-34 .
    2. 王彦快,米根锁,孔得盛,杨建刚,张玉. 基于MDS和改进SSA-SVM的高速铁路道岔故障诊断方法研究. 铁道学报. 2024(01): 81-90 .
    3. 夏煌智,陈丽敏,毛雪迪. 融入动态学习与高斯变异的自适应秃鹰搜索算法. 计算机与现代化. 2024(01): 117-126 .
    4. 杜云,周志奇,贾科进,丁力,卢孟杨林. 混合多项自适应权重的混沌麻雀搜索算法. 计算机工程与应用. 2024(07): 70-83 .
    5. 张迎春,姜岚,唐波,陈曦,胡辉. 基于改进麻雀搜索算法的变电构架优化方法. 振动与冲击. 2024(07): 94-101 .
    6. 游志平,马宏,梁群,王冠华. 基于IDBO-KELM的汽车零部件激光熔覆几何形貌预测建模方法研究. 应用激光. 2024(03): 51-62 .
    7. 马夏敏,张雷克,刘小莲,田雨,王雪妮,邓显羽. 基于麻雀搜索算法的梯级泵站优化调度. 水力发电学报. 2024(05): 43-53 .
    8. 王攀,胡业林. 基于改进麻雀算法的配电网故障定位. 哈尔滨商业大学学报(自然科学版). 2024(03): 307-314 .
    9. 王晨,周雪松,马幼捷,赵明,王鸿斌,赵家欣. 基于混合策略麻雀搜索算法优化的DC-DC变换器自抗扰稳压策略. 国外电子测量技术. 2024(07): 46-56 .
    10. 李嘉轩,于惠钧,马凡烁,刘紫英. 基于LF-ATSO算法在光伏系统MPPT中的研究. 现代电子技术. 2024(21): 149-155 .
    11. 李易达,王雨欣,李晨曦,赵冀,马恢,张漫,李寒. 融合改进头脑风暴与Powell算法的马铃薯多模态图像配准. 农业工程学报. 2024(19): 146-158 .
    12. 王基臣,许亮,张紫叶. 改进DBO优化CRJ网络的PEMFC剩余使用寿命预测. 电源技术. 2024(11): 2295-2303 .
    13. 李东升,朱奎,郭艳军,张树健,高明星,韩旭航. 组合神经网络的城市用水量预测模型研究与应用. 中国水利水电科学研究院学报(中英文). 2024(06): 579-589 .
    14. 苏莹莹,王升旭,白智超. 基于ISSA的多渠道易腐品供应链网络规划. 运筹与管理. 2024(11): 111-117 .
    15. 李涵,李文敬. 混合策略改进的金枪鱼群优化算法. 广西科学. 2023(01): 208-218 .
    16. 李泽政,刘卫星,李飞,李一帆,杨爱民. 基于数据增强的烧结矿转鼓强度预测研究. 烧结球团. 2023(06): 62-68 .

    Other cited types(47)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(495) PDF downloads(36) Cited by(63)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return