Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
GUO Qi, SHEN Xiaobin, LIN Guiping, et al. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081(in Chinese)
Citation: GUO Qi, SHEN Xiaobin, LIN Guiping, et al. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081(in Chinese)

Numerical simulation of icing on aircraft rotating surfaces

doi: 10.13700/j.bh.1001-5965.2021.0081
Funds:

National Natural Science Foundation of China 51806008

Funding for the Open Project of the Key Laboratory of Icing and Anti/De-icing IADL20200307

More Information
  • Corresponding author: SHEN Xiaobin, E-mail: shenxiaobin@buaa.edu.cn
  • Received Date: 19 Feb 2021
  • Accepted Date: 07 May 2021
  • Publish Date: 12 May 2021
  • Based on Shallow-Water icing thermodynamic theory, an unsteady icing model is developed to simulate icing on three-dimensional rotating surfaces. Jacobi and Gauss-Seidel iterative algorithms are adopted to numerically solve the governing equations of unsteady processes of surface icing. This method is used to calculate the simplified rotating blade model, and the results are compared with those of FENSAP, verifying the accuracy of the model. Then the effect of the rotation speed, droplet diameter and liquid water content on the rotating surface water film flow and icing shape is investigated. Results show that as the rotation speed increases, the deviation of the icing range and the water film coverage becomes more obvious. With the increase of the droplet diameter, the icing range and the water film coverage and thickness gradually increase. The icing and water film thicknesses increase as a result of the increase of the liquid water content, and the water film coverage also increases significantly.

     

  • loading
  • [1]
    CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75(4): 353-385.
    [2]
    SHEN X B, LIN G P, YU J, et al. Three-dimensional numerical simulation of ice accretion at the engine inlet[J]. Journal of Aircraft, 2013, 50(2): 635-642. doi: 10.2514/1.C031992
    [3]
    DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 3702-3707. doi: 10.1016/j.ijheatmasstransfer.2010.04.021
    [4]
    MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. doi: 10.2514/8.2520
    [5]
    GHENAI C, KULKARNI S, LIN C X. Validation of LEWICE 2.2 icing software code: Comparison with LEWICE 2.0 and experimental data[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 1249.
    [6]
    MYERS T G. Extension to the messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2): 211-218. doi: 10.2514/2.1312
    [7]
    BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a Shallow-Water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4): 640-646. doi: 10.2514/2.2646
    [8]
    易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11): 2152-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011008.htm

    YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2152-2158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011008.htm
    [9]
    申晓斌, 林贵平, 卜雪琴, 等. 发动机进气道短舱前缘结冰三维模拟研究[J]. 航空学报, 2013, 34(3): 517-524. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm

    SHEN X B, LIN G P, BU X Q, et al. Three-dimensional simulation research on ice shape at engine inlet nacelle front[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 517-524(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm
    [10]
    曹广州, 吉洪湖, 胡娅萍, 等. 模拟飞机迎风面三维积冰的数学模型[J]. 航空动力学报, 2011, 26(9): 1953-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201109008.htm

    CAO G Z, JI H H, HU Y P, et al. An icing model for simulating three dimensional ice accretion on the upwind surfaces of a plane[J]. Journal of Aerospace Power, 2011, 26(9): 1953-1963(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201109008.htm
    [11]
    CAO Y H, HUANG J S. New method for direct numerical simulation of three-dimensional ice accretion[J]. Journal of Aircraft, 2014, 52(2): 650-659.
    [12]
    雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121952-121962. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201809003.htm

    LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 121952-121962(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201809003.htm
    [13]
    BAIN J, CAJIGAS J, SANKAR L, et al. Prediction of rotor blade ice shedding using empirical methods[C]//AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7985.
    [14]
    REID T, BARUZZI G, OZCER I, et al. FENSAP-ICE simulation of icing on wind turbine blades, Part 1: Performance degradation[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 750.
    [15]
    REID T, BARUZZI G, OZCER I, et al. FENSAP-ICE simulation of icing on wind turbine blades, Part 2: Ice protection system design[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 751.
    [16]
    SWITCHENKO D, HABASHI W, REID T, et al. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[C]// 32nd ASME Wind Energy Symposium, 2014: 1399.
    [17]
    WANG Z Z, ZHU C L. Numerical simulation of three-dimensional rotor icing in hovering flight[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 545-555.
    [18]
    DONG W, ZHU J J, ZHENG M, et al. Numerical study of ice accretion on rotating aero-engine cone[C]//29th Congress of the International Council of the Aeronautical Sciences, 2014.
    [19]
    赵秋月, 董威, 朱剑鋆. 发动机旋转整流帽罩的水滴撞击特性分析[J]. 燃气涡轮试验与研究, 2011, 24(4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201104009.htm

    ZHAO Q Y, DONG W, ZHU J J. Droplets impinging characteristic analysis of the rotating fairing of aero-engine[J]. Gas Turbine Experiment and Research, 2011, 24(4): 32-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201104009.htm
    [20]
    吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409017.htm

    WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409017.htm
    [21]
    ROTHMAYER A, TSAO J. Water film runback on an airfoil surface[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 237.
    [22]
    申晓斌, 张志强, 林贵平, 等. 旋转部件复杂表面水滴撞击计算[J]. 空气动力学学报, 2016, 34(6): 709-713. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201606003.htm

    SHEN X B, ZHANG Z Q, LIN G P, et al. Droplet impingement calculation on complex suface of rotating part[J]. Acta Aerodynamica Sinica, 2016, 34(6): 709-713(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201606003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views(381) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return