Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
WU Jie, ZHANG Cheng, LI Miao, et al. Rocket return trajectory tracking guidance based on convex optimization and LQR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2270-2280. doi: 10.13700/j.bh.1001-5965.2021.0084(in Chinese)
Citation: WU Jie, ZHANG Cheng, LI Miao, et al. Rocket return trajectory tracking guidance based on convex optimization and LQR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2270-2280. doi: 10.13700/j.bh.1001-5965.2021.0084(in Chinese)

Rocket return trajectory tracking guidance based on convex optimization and LQR

doi: 10.13700/j.bh.1001-5965.2021.0084
Funds:

Science Challenge Project TZ2019001

Pre-research of Equipment Development During the "13th Five-Year Plan" 202020201320

More Information
  • Corresponding author: XIONG Fenfen, E-mail: fenfenx@bit.edu.cn
  • Received Date: 19 Feb 2021
  • Accepted Date: 18 Apr 2021
  • Publish Date: 07 May 2021
  • For the powered descent phase of the reusable launch vehicle, various strict process constraints, terminal constraints and requirements on fuel saving exist, which bring great challenges to the guidance. This paper proposes a trajectory tracking guidance method based on convex optimization and linear quadratic regulator (LQR). The improved receding horizon convex optimization method is used to track the reference velocity of the rocket without requiring accurate thrust control input, which greatly simplifies the optimization model, and thus saves the computational cost of solving the optimal control problem. Meanwhile, the fuel is reduced as far as possible under various initial errors and model errors. On the other hand, the LQR technique is used to track the position of the rocket with high precision. The simulation results show that compared with the traditional LQR tracking guidance method, the proposed method can obtain comparable tracking accuracy, while greatly reducing fuel consumption. And compared to the existing receding horizon convex optimization, the proposed method can evidently reduce the computational cost and improve reliability.

     

  • loading
  • [1]
    崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YHZJ201802006.htm

    CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(2): 27-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHZJ201802006.htm
    [2]
    王振国, 罗世彬, 吴建军. 可重复使用运载器研究进展[M]. 长沙: 国防科技大学出版社, 2004: 1-20.

    WANG Z G, LUO S B, WU J J. Development of reusable launch vehicle technology[M]. Changsha: National University of Defense Technology Press, 2004: 1-20(in Chinese).
    [3]
    高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报, 2016, 37(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201602003.htm

    GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics, 2016, 37(2): 145-152(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201602003.htm
    [4]
    HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of Astronautical Sciences, 1978, 27(3): 239-268.
    [5]
    ROENNEKE A J, CORNWELL P J. Trajectory control for a low-lift re-entry vehicle[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 927-933. doi: 10.2514/3.21103
    [6]
    DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002: 4457.
    [7]
    张大元, 雷虎民, 王君, 等. 一种反馈线性化弹道跟踪制导律设计[J]. 弹道学报, 2014, 26(4): 7-12. doi: 10.3969/j.issn.1004-499X.2014.04.002

    ZHANG D Y, LEI H M, WANG J, et al. A trajectory tracking guidance law based on feedback linearization method[J]. Journal of Ballistics, 2014, 26(4): 7-12(in Chinese). doi: 10.3969/j.issn.1004-499X.2014.04.002
    [8]
    刘晓东, 黄万伟, 禹春梅. 含扩张状态观测器的高超声速飞行器动态面姿态控制[J]. 宇航学报, 2015, 36(8): 916-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201508008.htm

    LIU X D, HUANG W W, YU C M. Dynamic surface attitude control for hypersonic vehicle containing extended state observer[J]. Journal of Astronautics, 2015, 36(8): 916-922(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201508008.htm
    [9]
    宋晨, 周军, 郭建国, 等. 高超声速飞行器基于路径跟踪的制导方法[J]. 宇航学报, 2016, 37(4): 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604009.htm

    SONG C, ZHOU J, GUO J G, et al. Hypersonic vehicle guidance based on path-following[J]. Journal of Astronautics, 2016, 37(4): 435-441(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604009.htm
    [10]
    ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366. doi: 10.2514/1.27553
    [11]
    ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2104-2113. doi: 10.1109/TCST.2012.2237346
    [12]
    BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1161-1171. doi: 10.2514/1.47202
    [13]
    LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765. doi: 10.2514/1.62110
    [14]
    LU P, LIU X F. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 375-389.
    [15]
    WANG Z B, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2603-2615.
    [16]
    路钊. 高超声速飞行器再入末段轨迹在线优化[D]. 哈尔滨: 哈尔滨工业大学, 2014: 27-74.

    LU Z. Online trajectory optimization for the terminal stage of reentry hypersonic vehicles[D]. Harbin: Harbin Institute of Technology, 2014: 27-74(in Chinese).
    [17]
    安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5): 323606. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202005017.htm

    AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323606(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202005017.htm
    [18]
    雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200806017.htm

    YONG E M, TANG G J, CHEN L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200806017.htm
    [19]
    王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5): 936-943. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201905011.htm

    WANG S Q, MA D L, YANG M Q, et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 936-943(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201905011.htm
    [20]
    DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2011, 32(4): 476-502.
    [21]
    李樾, 韩维, 陈清阳, 等. 凸优化算法在有人/无人机协同系统航迹规划中的应用[J]. 宇航学报, 2020, 41(3): 276-286. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003005.htm

    LI Y, HAN W, CHEN Q Y, et al. Application of convex optimization algorithm in trajectory planning of manned/unmanned cooperative system[J]. Journal of Astronautics, 2020, 41(3): 276-286(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202003005.htm
    [22]
    唐胜景, 王肖, 郭杰. 基于hp伪谱凸优化的高超声速滑翔飞行器轨迹优化与制导[J]. 战术导弹技术, 2020(5): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD202005012.htm

    TANG S J, WANG X, GUO J. Trajectory optimization and guidance for hypersonic gliding vehicles based on hp pseudospectral convex programming[J]. Tactical Missile Technology, 2020(5): 66-75(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD202005012.htm
    [23]
    QUOC T D, SAVORGNAN C, DIEHL M. Real-time sequential convex programming for optimal control applications[C]//Modeling, Simulation and Optimization of Complex Processes, 2012: 91-102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views(508) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return