Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
XU Lingliang, CHEN Guiming, LI Qiaoyanget al. Ultra-local model-free speed predictive control based on ESO for PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085(in Chinese)
Citation: XU Lingliang, CHEN Guiming, LI Qiaoyanget al. Ultra-local model-free speed predictive control based on ESO for PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085(in Chinese)

Ultra-local model-free speed predictive control based on ESO for PMSM

doi: 10.13700/j.bh.1001-5965.2021.0085
Funds:

Military Scientific Research Projects 20191C050239

More Information
  • Corresponding author: CHEN Guiming, E-mail: 792757066@qq.com
  • Received Date: 22 Feb 2021
  • Accepted Date: 03 Jul 2021
  • Publish Date: 13 Jul 2021
  • An ultra-local model-free speed predictive control (MFSPC) method based on an extended state observer (ESO) is proposed to address the control performance decrease of permanent magnet synchronous motor (PMSM) due to parameter changes and external disturbances, and to solve the one-step delay problem in digital systems. This method reduces the model mismatch caused by motor parameter changes, using only the input and output of speed loops without motor parameters. The ESO is established to overcome the problems of the traditional MFSPC method which adjusts many parameters with large workload and output pulsation, obvious chattering, and low anti-interference and robustness. The ESO monitors the total disturbance of the system in real time, and performs feedforward compensation. It also addresses the beat delay problem in the digital control system, using the generated speed prediction, and sets the control parameters to improve control performance based on frequency domain analysis. Experimental results show that the proposed method has strong anti-interference and robustness, can track the rated speed steadily, and has faster dynamic response.

     

  • loading
  • [1]
    陆骏, 杨建国. 永磁同步电机滑模直接转速观测器[J]. 电机与控制学报, 2018, 22(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201801013.htm

    LU J, YANG J G. Direct sliding mode speed observer of permanent magnetic synchronous motor[J]. Electric Machines and Control, 2018, 22(1): 86-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201801013.htm
    [2]
    黄宴委, 汤邵建, 黄文超, 等. 基于期望电压矢量的永磁同步电机快速速度预测控制[J]. 电机与控制学报, 2020, 24(4): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202004011.htm

    HUANG Y W, TANG S J, HUANG W C, et al. Fast speed predictive control of permanent magnet synchronous motor based on expected voltage vector[J]. Electric Machines and Control, 2020, 24(4): 87-95(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202004011.htm
    [3]
    周湛清, 夏长亮, 陈炜, 等. 具有参数鲁棒性的永磁同步电机改进型预测转矩控制[J]. 电工技术学报, 2018, 33(5): 965-972. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201805001.htm

    ZHOU Z Q, XIA C L, CHEN W, et al. Modified predictive torque control for PMSM drives with parameter robustness[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 965-972(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201805001.htm
    [4]
    XU L L, CHEN G M, LI Q Y. Ultra-local model-free predictive current control based on nonlinear disturbance compensation for permanent magnet synchronous motor[J]. IEEE Access, 2020, 8: 127690-127699. doi: 10.1109/ACCESS.2020.3008158
    [5]
    刘宁, 夏长亮, 周湛清, 等. 基于比例增益补偿的永磁同步电机转速平滑控制[J]. 电工技术学报, 2018, 33(17): 4007-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817009.htm

    LIU N, XIA C L, ZHOU Z Q, et al. Smooth speed control for permanent magnet synchronous motor using proportional gain compensation[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4007-4015(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817009.htm
    [6]
    JUNG J W, LEU V Q, DO T D, et al. Adaptive PID speed control design for permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 900-908.
    [7]
    马玉梅, 谢洋, 白环, 等. 基于DTC的PMSM中SMC与纯PI的协同控制器研究[J]. 电工技术, 2019, 496(10): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJY201910006.htm

    MA Y M, XIE Y, BAI H, et al. Research on cooperative controller with SMC and only PI in PMSM based on DTC[J]. Electric Engineering, 2019, 496(10): 19-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJY201910006.htm
    [8]
    刘晓楠. 矩阵变换器-永磁同步电机系统直接转矩控制转矩波动抑制策略[J]. 中国电机工程学报, 2020, 40(1): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202001028.htm

    LIU X N. Torque ripple reduction in matrix converter-fed permanent magnet synchronous motor driven by direct torque control[J]. Proceedings of the CSEE, 2020, 40(1): 300-308(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202001028.htm
    [9]
    VAFAIE M H, DEHKORDI B M, MOALLEM P, et al. A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3738-3753. https://ieeexplore.ieee.org/document/7169583
    [10]
    XIA C, ZHAO J, YAN Y, et al. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2700-2713. https://ieeexplore.ieee.org/document/6572870/
    [11]
    张虎, 张永昌, 刘家利, 等. 基于单次电流采样的永磁同步电机无模型预测电流控制[J]. 电工技术学报, 2017, 32(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702021.htm

    ZHANG H, ZHANG Y C, LIU J L, et al. Model-free predictive current control of permanent magnet synchronous motor based on single current sampling[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 180-187(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702021.htm
    [12]
    刘旭东, 李珂, 张奇, 等. 基于非线性扰动观测器的永磁同步电机单环预测控制[J]. 中国电机工程学报, 2018, 38(7): 2153-2162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201807026.htm

    LIU X D, LI K, ZHANG Q, et al. Single-loop predictive control of PMSM based on nonlinear disturbance observers[J]. Proceedings of the CSEE, 2018, 38(7): 2153-2162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201807026.htm
    [13]
    刘珅, 高琳. 永磁同步电机的改进模型预测直接转矩控制[J]. 电机与控制学报, 2020, 24(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001002.htm

    LIU K, GAO L. Improved model of predictive direct torque control for permanent magnet synchronous motor[J]. Electric Machines and Control, 2020, 24(1): 10-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001002.htm
    [14]
    贾成禹, 王旭东, 周凯. 基于线性变参数模型预测控制的内置式永磁同步电机转速控制器设计[J]. 电工技术学报, 2020, 35(22): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202022006.htm

    JIA C Y, WANG X D, ZHOU K. Design of built-in permanent magnet synchronous motor speed controller based on linear variable parameter model predictive control[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 50-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202022006.htm
    [15]
    FLIESS M, JOIN C. Model-free control[J]. International Journal of Control, 2013, 86(12): 2228-2252.
    [16]
    ZHOU Y, LI H, ZHANG H. Model-free deadbeat predictive current control of a surface-mounted permanent magnet synchronous motor drive system[J]. Journal of Power Electronics, 2018, 18(1): 103-115.
    [17]
    ZHOU Y, LI H, YAO H. Model-free control of surface mounted PMSM drive system[C]//IEEE International Conference on Industrial Technology. Piscataway: IEEE Press, 2016: 175-180.
    [18]
    ZHANG X, HOU B, MEI Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electro-nics, 2017, 32(5): 3818-3834. https://ieeexplore.ieee.org/document/7515145
    [19]
    ZHANG Y, JIN J, HUANG L. Model-free predictive current control of PMSM drives based on extended state observer using ultra-local model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003.
    [20]
    杨淑英, 王玉柱, 储昭晗, 等. 基于增益连续扩张状态观测器的永磁同步电机电流解耦控制[J]. 中国电机工程学报, 2020, 40(6): 1985-1997. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006025.htm

    YANG S Y, WANG Y Z, CHU Z H, et al. Current decoupling control of PMSM based on an extended state observer with continuous gains[J]. Proceedings of the CSEE, 2020, 40(6): 1985-1997(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006025.htm
    [21]
    XU L L, CHEN G M, LI G Y, et al. Model predictive control based on parametric disturbance compensation[J]. Mathematical Problems in Engineering, 2020, 2020: 9543928.
    [22]
    毛海杰, 李炜, 蒋栋年, 等. 基于线性扩张状态观测器的永磁同步电机状态估计与性能分析[J]. 电工技术学报, 2019, 34(10): 2155-2165. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201910017.htm

    MAO H J, LI W, JIANG D N, et al. State estimation and performance analysis based on linear extended state observer for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2155-2165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201910017.htm
    [23]
    WANG F X, HE L. FPGA based predictive speed control for PMSM system using integral sliding mode disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 972-981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(605) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return