Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
FU Baiheng, WANG Weijie, WANG Yuanqin, et al. Design and analysis of high precision for spherical Lorentz force magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2222-2229. doi: 10.13700/j.bh.1001-5965.2021.0103(in Chinese)
Citation: FU Baiheng, WANG Weijie, WANG Yuanqin, et al. Design and analysis of high precision for spherical Lorentz force magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2222-2229. doi: 10.13700/j.bh.1001-5965.2021.0103(in Chinese)

Design and analysis of high precision for spherical Lorentz force magnetic bearing

doi: 10.13700/j.bh.1001-5965.2021.0103
Funds:

National Natural Science Foundation of China 52075545

More Information
  • Corresponding author: WANG Weijie, E-mail: wangwjie@126.com
  • Received Date: 02 Mar 2021
  • Accepted Date: 05 May 2021
  • Publish Date: 18 May 2021
  • Aim at solving following problems. Firstly, the limited deflection angle of the cylindrical Lorentz force magnetic bearing (LFMB) can leads to the short duration of torque output of magnetically suspended control and sensing gyroscope (MSCSG). Secondly, the low uniformity of magnetic density between the LFMB's air gap will also affect the control sensitivity of the MSCSG. A high-precision spherical design and analysis of LFMB are proposed. The spherical LFMB's rotor spherical magnetic sleeve and stator spherical winding are both concentric with the double spherical gyroscope rotor, and the air gap is spherical shell shape, which ensures that the width of the air gap on both sides of the winding coil remains unchanged during deflection. Compared to the cylindrical LFMB, the deflection angle of the spherical LFMB is increased from ±0.6° to ±2°. The mathematical analysis model of the air gap magnetic density of the cylindrical and spherical LFMB is derived by the equivalent magnetic circuit method, and the finite element simulation model of the cylindrical and spherical LFMB is constructed based on the ANSYS command stream. The simulation analysis shows that the maximum magnetic density of the spherical LFMB decreases by 34.1% compared to the cylindrical LFMB within the deflection range of the rotor along the deflection centerline. When the rotor is not deflected, the uniformity of the magnetic density at the cross-section of the spherical LFMB coil increases by 11.6% compared to the cylindrical. When the rotor is deflected, the uniformity of the magnetic density at the cross-section of the spherical LFMB coil increases by 17.7% compared to the cylindrical. The proposed method lays the foundation for the improvement of the control and sensitivity of the magnetically suspended control and sensing gyroscope.

     

  • loading
  • [1]
    BITTERLY J G. Flywheel technology: Past, present, and 21st century projections[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(8): 13-16. doi: 10.1109/62.707557
    [2]
    CHRISTOPHER D A, BEACH R. Flywheel technology development program for aerospace applications[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(6): 9-14. doi: 10.1109/62.683723
    [3]
    林士谔. 动力调谐陀螺仪[M]. 北京: 国防工业出版社, 1983: 25-32.

    LIN S E. Dynamically tuned gyroscopes[M]. Beijing: National Defense Industry Press, 1983: 25-32(in Chinese).
    [4]
    PENNÉ B, TOBEHN C, KASSEBOM M, et al. A high agile satellite platform for Earth observation-performance description using new generation missions[C]//57th International Astronautical Congress. Reston: AIAA, 2006.
    [5]
    KURITA N, ISHIKAWA T, MATSUNAMI M. Basic design and dynamic analysis of the small-sized flywheel energy storage system-application of Lorentz force type magnetic bearing[C]//2009 International Conference on Electrical Machines and Systems. Piscataway: IEEE Press, 2010: 1-6.
    [6]
    TANG J Q, XIANG B, WANG C E. Rotor's suspension for vernier-gimballing magnetically suspended flywheel with conical magnetic bearing[J]. ISA Transactions, 2015, 58: 509-519. doi: 10.1016/j.isatra.2015.05.011
    [7]
    任元, 王卫杰, 刘强, 等. 一种磁悬浮控制敏感陀螺: CN104613950B[P]. 2017-06-27.

    REN Y, WANG W J, LIU Q, et al. Magnetically suspended control and sensing gyroscope: CN104613950B[P]. 2017-06-27(in Chinese).
    [8]
    REN Y, CHEN X C, CAI Y W, et al. Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4921-4932. doi: 10.1109/TIE.2017.2772161
    [9]
    房建成, 任元. 磁悬浮控制力矩陀螺技术[M]. 北京: 国防工业出版社, 2014: 25-30.

    FANG J C, REN Y. Magnetically suspended control moment gyroscope technology[M]. Beijing: National Defense Industry Press, 2014: 25-30(in Chinese).
    [10]
    房建成, 孙津济, 樊亚洪. 磁悬浮惯性动量轮技术[M]. 北京: 国防工业出版社, 2012: 58-65.

    FANG J C, SUN J J, FAN Y H. Magnetically suspended inertial momentum wheel technology[M]. Beijing: National Defense Industry Press, 2012: 58-65(in Chinese).
    [11]
    DOWNER J, JOHNSON B. Modelling and control of an annular momentum control device[R]. [S. l. ]: NASA Con-tractor Report, 1988: 23-29.
    [12]
    GERLACH B, EHINGER M, RAUE H K, et al. Gimballing magnetic bearing reaction wheel with digital controller[C]//11th European Space Mechanisms and Tribology Symposium, 2005: 21-23.
    [13]
    夏长峰, 蔡远文, 任元, 等. MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811010.htm

    XIA C F, CAI Y W, REN Y, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811010.htm
    [14]
    CHEN X C, CAI Y W, REN Y, et al. Spacecraft angular rates and angular acceleration estimation using single-gimbal magnetically suspended control moment gyros[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 440-450. doi: 10.1109/TIE.2018.2826468
    [15]
    LIU Q, WANG K, REN Y, et al. Optimization design of launch locking protective device (LLPD) based on carbon fiber bracket for magnetically suspended flywheel (MSFW)[J]. Acta Astronautica, 2019, 154: 9-17. doi: 10.1016/j.actaastro.2018.10.044
    [16]
    辛朝军, 蔡远文, 任元, 等. 磁悬浮敏感陀螺动力学建模与关键误差源分析[J]. 北京航空航天大学学报, 2016, 42(10): 2048-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201610005.htm

    XIN C J, CAI Y W, REN Y, et al. Dynamic modeling and key error sources analysis of magnetically suspended sensitive gyroscopes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2048-2058(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201610005.htm
    [17]
    CHEN M, KNOSPE C R. Feedback linearization of active magnetic bearings: Current-mode implementation[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(6): 632-639. doi: 10.1109/TMECH.2005.859824
    [18]
    XU G F, CAI Y W, REN Y, et al. Application of a new Lorentz force-type magnetic bearing in tilting control for magnetically suspended control & sensitive gyro-scope with cross sliding mode control[J]. Journal of Aerospace Technology and Management, 2017, 61(1): 107-109.
    [19]
    ZHAO Y, LIU Q, MA L M, et al. Novel Lorentz force-type magnetic bearing with flux congregating rings for magnetically suspended gyrowheel[J]. IEEE Transactions on Magnetics, 2019, 55(12): 1-8.
    [20]
    许国锋, 蔡远文, 任元, 等. 洛伦兹力磁轴承磁密均匀度设计与分析[J]. 北京航空航天大学学报, 2017, 43(3): 559-566. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201703018.htm

    XU G F, CAI Y W, REN Y, et al. Design and analysis on uniformity of magnetic flux density in Lorentz force-type magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 559-566(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201703018.htm
    [21]
    周一恒. 主被动结合磁悬浮隔振平台的基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 105-110.

    ZHOU Y H. Fundamental research on active and passive combined magnetic levitation vibration isolation platform[D]. Harbin: Harbin Institute of Technology, 2019: 105-110(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(320) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return