Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Wen, CAI Yongqing, CHEN Mengfan, et al. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105(in Chinese)
Citation: LI Wen, CAI Yongqing, CHEN Mengfan, et al. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105(in Chinese)

Optical path simulation and design of NO rapid detection optical cavity structure

doi: 10.13700/j.bh.1001-5965.2021.0105
Funds:

National Natural Science Foundation of China 51205005

Beijing Science and Technology Innovation Service Ability Building Supporting Project PXM2017-014212-000013

More Information
  • Corresponding author: LI Wen, E-mail: lw@ncut.edu.cn
  • Received Date: 03 Mar 2021
  • Accepted Date: 06 Jun 2021
  • Publish Date: 30 Jul 2021
  • According to the chemiluminescence reaction mechanism of nitric oxide and ozone, a new cylindrical total reflection S-type optical cavity design for rapid detection of nitric oxide gas is proposed. The optical cavity model is based on the total reflection S-type structure on the inner wall of the cylinder. Cylindrical light source is used as the light scattering element, so the chemiluminescence light is concentrated on the photosensitive surface of the detector with maximum efficiency, which strengthens the measurement signal of nitric oxide concentration and improves the detection accuracy. Optical software ZEMAX was used to simulate the optical path of the model. The comparative analysis showed that the chemiluminescence collection efficiency of the S-type optical cavity collection path was 36.6%, and is verified by experiments. The experimental results showed that in a certain range of concentration, there is a good linear relationship between the luminescence intensity of the reaction and the concentration of NO gas. The linear correlation was 0.999 2. In the range of 0‰~2.5‰, the detection limit was 0.001‰. The model is simple in structure and meets the national standards. Moreover, it provides a practical idea of design for the on-line exhaust gas detection.

     

  • loading
  • [1]
    刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604049.htm

    LIU P, JIAN J W, CHEN Z Y. Design of automobile exhaust gas detection system based on integrated neural network[J]. Journal of Environmental Engineering, 2016, 10(4): 1883-1887 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604049.htm
    [2]
    李世武, 王琳虹, 郭栋, 等. 基于机动车排放的自适应信号控制模型[J]. 华南理工大学学报(自然科学版), 2011, 39(3): 101-106. doi: 10.3969/j.issn.1000-565X.2011.03.020

    LI S W, WANG L H, GUO D, et al. Adaptive signal control model based on vehicle emission[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(3): 101-106(in Chinese). doi: 10.3969/j.issn.1000-565X.2011.03.020
    [3]
    罗学科, 刘鹏, 李文, 等. 基于CLD机动车尾气NOx排放快速在线检测研究[J]. 环境科学与技术, 2020, 43(9): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202009017.htm

    LUO X K, LIU P, LI W, et al. Research on rapid on-line detection of NOx emission from motor vehicle exhaust based on CLD[J]. Environmental Science and Technology, 2020, 43(9): 119-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202009017.htm
    [4]
    马清芝, 车胜新. 我国汽车污染物排放标准制、修订发展一瞥[J]. 机械工业标准化与质量, 2006(3): 14-16. doi: 10.3969/j.issn.1007-6905.2006.03.005

    MA Q Z, CHE S X. A glance at the development and revision of my country's automobile pollutant emission standards[J]. Standardization and Quality of Machinery Industry, 2006(3): 14-16(in Chinese). doi: 10.3969/j.issn.1007-6905.2006.03.005
    [5]
    环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB18352.6—2016[S]. 北京: 中国环境科学出版社, 2020.

    Ministry of Environmental Protection, Gneral Administration of Quality Supervision, Inspection and Quarantine. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6): GB18352.6—2016[S]. Beijing: China Environmental Science Press, 2020(in Chinese).
    [6]
    吴盛阳, 胡仁志, 谢品华, 等. 基于腔衰荡光谱技术(CRDS)对大气总活性氮氧化物(NOy)的实时测量[J]. 光谱学与光谱分析, 2020, 40(6): 1661-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006001.htm

    WU S Y, HU R Z, XIE P H, et al. Real-time measurement of atmospheric total active nitrogen oxides (NOy) based on cavity ring-down spectroscopy (CRDS)[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1661-1667(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006001.htm
    [7]
    李杭. 微型NO化学发光分析仪的研制与应用[D]. 合肥: 中国科学技术大学, 2019.

    LI H. Development and application of miniature NO chemiluminescence analyzer[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [8]
    孟晓辰, 郝群, 朱秋东, 等. 基于Zemax的部分补偿透镜的优化设计[J]. 光学学报, 2011, 31(6): 222-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201106041.htm

    MENG X C, HAO Q, ZHU X D, et al. Optimal design of partial compensation lens based on Zemax[J]. Acta Optica Sinica, 2011, 31(6): 222-228(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201106041.htm
    [9]
    苏杭, 王桂梅, 杨立洁. 大气痕量硫荧光采集光路设计与仿真[J]. 激光与光电子学进展, 2020, 57(5): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202005015.htm

    SU H, WANG G M, YANG L J. Design and simulation of light path for chemiluminescence collection of atmospheric trace sulfur[J]. Progress in Laser and Optoelectronics, 2020, 57(5): 144-149(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202005015.htm
    [10]
    李俊纬, 倪屹, 郭瑜, 等. 基于凹面光栅的特定蛋白分析仪结构设计及性能分析[J]. 光学学报, 2019, 39(8): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908046.htm

    LI J W, NI Y, GUO Y, et al. Structure design and performance analysis of specific protein analyzer based on concave grating[J]. Acta Optica Sinica, 2019, 39(8): 380-388(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908046.htm
    [11]
    扶昭富, 李攻科, 胡玉斐. 催化化学发光分析系统研究进展[J]. 光谱学与光谱分析, 2015, 35(9): 2450-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201509014.htm

    FU Z F, LI G K, HU Y F. Research progress of catalytic chemiluminescence analysis system[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2450-2456(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201509014.htm
    [12]
    金星焕, 陈和, 董家宁, 等. 凹面光栅拉曼光谱仪的光学设计[J]. 光学学报, 2015, 35(9): 359-365.

    JIN X H, CHEN H, DONG J N, et al. Optical design of concave grating Raman spectrometer[J]. Acta Optica Sinica, 2015, 35(9): 359-365(in Chinese).
    [13]
    国爱燕, 白廷柱, 胡海鹤, 等. 固体火箭发动机羽烟紫外辐射特性分析[J]. 光学学报, 2012, 32(10): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201210027.htm

    GUO A Y, BAI T Z, HU H H, et al. Analysis of ultraviolet radiation characteristics of solid rocket motor plume[J]. Acta Optica Sinica, 2012, 32(10): 176-183(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201210027.htm
    [14]
    杨兰, 蔡晓梅, 周雄图, 等. 圆孔液晶透镜的ZEMAX设计与优化[J]. 发光学报, 2017, 38(12): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201712020.htm

    YANG L, CAI X M, ZHOU X T, et al. ZEMAX design and optimization of round hole liquid crystal lens[J]. Chinese Journal of Luminescence, 2017, 38(12): 1688-1694(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201712020.htm
    [15]
    李杭, 刘文清, 姚路. 基于PIN光电二极管的微型一氧化氮化学发光传感器[J]. 光学学报, 2019, 39(5): 291-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201905036.htm

    LI H, LIU W Q, YAO L. Miniature nitric oxide chemiluminescence sensor based on PIN photodiode[J]. Acta Optica Sinica, 2019, 39(5): 291-295(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201905036.htm
    [16]
    陈洪芳, 汤亮, 石照耀, 等. 基于双波长法补偿空气折射率的激光追踪系统ZEMAX仿真方法[J]. 中国激光, 2019, 46(1): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201901029.htm

    CHEN H F, TANG L, SHI Z Y, et al. ZEMAX simulation method of laser tracking system based on dual-wavelength method to compensate air refractive index of air[J]. Chinese Journal of Lasers, 2019, 46(1): 232-239(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201901029.htm
    [17]
    陈洪芳, 汤亮, 孙衍强, 等. 基于Zemax仿真的激光追踪测量光学系统能量分析[J]. 中国激光, 2018, 45(7): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201807025.htm

    CHEN H F, TANG L, SUN Y Q, et al. Energy analysis of laser tracking measurement optical system based on Zemax simulation[J]. Chinese Journal of Lasers, 2018, 45(7): 183-190(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201807025.htm
    [18]
    HAN X Y, HUAN K W, SHENG S J. Performance evaluation and optimization design of photoelectric pyrometer detection optical system[J]. Defence Technology, 2020, 16(2): 401-407.
    [19]
    GAN L, ZHANG H, LIU B, et al. Influence of high overload on the collimating lenses of laser ranging systems[J]. Defence Technology, 2020, 16(2): 354-361.
    [20]
    WU Q Y, TANG Y H, CHEN X Y, et al. Method for evaluating ophthalmic lens based on eye-lens-object optical system[J]. Optics Express, 2019, 27(26): 37274-37285.
    [21]
    HUANG P, HE C W, FAN B, et al. Analysis and optimization of the Glass pattern realized by a microlens array[J]. Applied Optics, 2019, 58(36): 9976-9982.
    [22]
    HANG T Y, WANG X L, LIU F, et al. Zemax-based optimum structural design of probe of an optical-fiber sensor[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(2): 309-317.
    [23]
    LIU P, CHEN B, ZHANG Y C, et al. Simulation method of Wolter type grazing incidence telescope imaging of an X-ray region[J]. Research in Astronomy and Astrophysics, 2019, 19(12): 13-20.
    [24]
    LEE J, LEE J, WON Y H. Nonmechanical three-dimensional beam steering using electrowetting-based liquid lens and liquid prism[J]. Optics Express, 2019, 27(25): 36757-36766.
    [25]
    ZHANG J K, WANG X, CHEN X B, et al. Paraxial lens design of double-telecentric anamorphic zoom lenses with variable magnifications or fixed conjugate[J]. Journal of the Optical Society of America A-Optics, Image Science, and Vision, 2019, 36(12): 1977-1990.
    [26]
    BISESTO F G, CASTELLANO M, CHIADRONI E, et al. Zemax simulations describing collective effects in transition and diffraction radiation[J]. Optics Express, 2018, 26(4): 5075-5082.
    [27]
    WEI L M, WANG C C, DUAN W R. Simulation of detecting piston error between segmented mirrors by Fizaeu interference technique on ZEMAX[J]. Optik, 2019, 183: 828-834.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(239) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return