Volume 48 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LIU Dejun, TIAN Gan, JIN Guofeng, et al. Rotating parabolic-conical corrosion pit model establishment and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106(in Chinese)
Citation: LIU Dejun, TIAN Gan, JIN Guofeng, et al. Rotating parabolic-conical corrosion pit model establishment and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106(in Chinese)

Rotating parabolic-conical corrosion pit model establishment and its application

doi: 10.13700/j.bh.1001-5965.2021.0106
Funds:

National Natural Science Foundation of China 52075541

National Natural Science Foundation of China 52272446

Natural Science Foundation of Shaanxi Province 2020JM-354

More Information
  • Corresponding author: TIAN Gan, E-mail: tiangan_2012@163.com
  • Received Date: 03 Mar 2021
  • Accepted Date: 04 Jun 2021
  • Publish Date: 24 Jun 2021
  • As one of the common degradation forms of metal structure exposed to the corrosive medium, pitting may cause the local stress concentration and decrease the strength, reliability and safety of the structure of equipment. Thus, an exact pit model is useful for the stress distribution analysis of the metal structure exposed to the corrosive medium. In this instance, by surveying the pattern of typical corrosive pitting, the concept of pit open angle is redefined, and a novel model called rotating parabolic-conial model is developed. Both FEM simulations and tensile experiments are performed to validate the accuracy and efficiency of the proposed model. It is shown that the maximum of the stress concentration caused by the pitting is generally located around the bottom or mouth area of the pit. Compared with the semi-ellipsoid model, the former is more accurate and sensitive on the description of the stress distribution around the bottom shoulder and mouth of a pit.

     

  • loading
  • [1]
    刘治国, 李旭东, 陈川. 单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究[J]. 机械科学与技术, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075

    LIU Z G, LI X D, CHEN C. Influence of single marginal microcosmic damage on concentration effect of corrosion pit stress for aluminum alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 456-462(in Chinese). doi: 10.13433/j.cnki.1003-8728.20200075
    [2]
    LIU D Z, LI Y, XIE X D, et al. Effect of pre-corrosion pits on residual fatigue life for 42CrMo steel[J]. Materials (Basel, Switzerland), 2019, 12(13): 2130-2137. doi: 10.3390/ma12132130
    [3]
    ISHIHARA S, SAKA S, NAN Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law[J]. Fracture of Engineering Materials and Structures, 2006, 29(6): 472-480. doi: 10.1111/j.1460-2695.2006.01018.x
    [4]
    FARHAD F, ZHANG X, SMYTH-BOYLE D. Fatigue behaviour of corrosion pits in X65 steel pipelines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(5): 1771-1782. doi: 10.1177/0954406218776338
    [5]
    XIANG L H, PAN J Y, CHEN S Y. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen[J]. Results in Physics, 2018, 9: 463-470. doi: 10.1016/j.rinp.2018.03.005
    [6]
    HASHIM M, FARHAD F, SMYTH-BOYLE D, et al. Behavior of 316L stainless steel containing corrosion pits under cyclic loading[J]. Materials and Corrosion, 2019, 70(11): 2009-2019. doi: 10.1002/maco.201810744
    [7]
    LI X W, LIANG J S, SHI T, et al. Tribological behaviors of vacuum hot-pressed ceramic composites with enhanced cyclic oxidation and corrosion resistance[J]. Ceramics International, 2020, 46(9): 12911-12920. doi: 10.1016/j.ceramint.2020.02.057
    [8]
    EUBANKS R A. Stress concentration due to a hemispherical pit at a free surface[J]. Journal of Applied Mechanics, 1954, 21(3): 57-62.
    [9]
    FUJITA T, SADAVASU T. Stress concentration due to hemispherical pit at a free surface of a thick plate under all around tension[J]. Bulletin of the Japan Society of Mechanical Engineers, 1978, 21(154): 561-565. doi: 10.1299/jsme1958.21.561
    [10]
    CERIT M. Corrosion pit-induced stress concentration in spherical pressure vessel[J]. Thin-Walled Structures, 2019, 136: 106-112. doi: 10.1016/j.tws.2018.12.014
    [11]
    CERIT M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit[J]. Corrosion Science, 2013, 67: 225-232. doi: 10.1016/j.corsci.2012.10.028
    [12]
    CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7): 2467-2472. doi: 10.1016/j.engfailanal.2009.04.004
    [13]
    HOU J, SONG L. Numerical investigation on stress concentration of tension steel bars with one or two corrosion pits[J]. Advances in Materials Science and Engineering, 2015, 2015: 413737.
    [14]
    LI J Q. Modelling on the evolution of corrosion pit during stress corrosion[J]. Advances in Petroleum Exploration and Development, 2016, 11(2): 64-69.
    [15]
    LIU L, HOU N, DING N, et al. Interacting effects of internal defects and corrosion pits on the stress concentration of hourglass shaped specimens[J]. Journal of Failure Analysis and Prevention, 2019, 19(4): 967-975. doi: 10.1007/s11668-019-00682-2
    [16]
    LI C Q, YANG S T. Stress intensity factors for high aspect ratio semi-elliptical internal surface cracks in pipes[J]. International Journal of Pressure Vessels and Piping, 2012, 96-97(1): 13-23.
    [17]
    ATLURI S N, KATHIRESAN K. Influence of flaw shapes on stress intensity factors for pressure vessel surface flaws and nozzle corner cracks[J]. Journal of Pressure Vessel Technology, 1980, 102(3): 278-286. doi: 10.1115/1.3263332
    [18]
    ACUÑA N, GONZÁLEZ-SÁNCHEZ J, KÚ-BASULTO G, et al. Analysis of the stress intensity factor around corrosion pits developed on structures subjected to mixed loading[J]. Scripta Materialia, 2006, 55(4): 363-366. doi: 10.1016/j.scriptamat.2006.04.024
    [19]
    TURNBULL A, WRIGHT L, CROCKER L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit[J]. Corrosion Science, 2010, 52(4): 1492-1498. doi: 10.1016/j.corsci.2009.12.004
    [20]
    张川, 姚卫星. 危险蚀坑评判及疲劳寿命计算[J]. 机械强度, 2013, 35(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201302019.htm

    ZHANG C, YAO W X. Judgment of critical pits and calculation of fatigue life[J]. Journal of Mechanical Strength, 2013, 35(2): 207-213(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201302019.htm
    [21]
    WANG W G, ZHOU A N, FU G Y, et al. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits[J]. Engineering Failure Analysis, 2017, 81: 254-269. doi: 10.1016/j.engfailanal.2017.06.026
    [22]
    国家市场监督管理总局, 国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T228.1—2021[S]. 北京: 中国标准出版社, 2011: 11-14.

    State Administration for Market Regulation, Standardization Administtration of the People's Republi of China. Metallic materials-Tensile testing-Part 1: Method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2011: 11-14(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views(211) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return