Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
DU Xianchen, LIU Xue'ao, DONG Yang, et al. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125(in Chinese)
Citation: DU Xianchen, LIU Xue'ao, DONG Yang, et al. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125(in Chinese)

Design and dimensional synthesis of a variable wing sweep mechanism

doi: 10.13700/j.bh.1001-5965.2021.0125
Funds:

Open Research Program of State Key Laboratory of Robotics and Systems SKLRS-2021-KF-01

More Information
  • Corresponding author: WANG Chunjie, E-mail: wangcj@buaa.edu.cn
  • Received Date: 17 Mar 2021
  • Accepted Date: 25 Jun 2021
  • Publish Date: 29 Jul 2021
  • By changing the wing sweep angle, the variable wing sweep aircraft can achieve the best flight state under different flight speeds. To complete the folding and unfolding movements of the wing skin when the wing sweep angle changes under the single drive condition, we present a new driving mechanism for the variable sweep aircraft based on the planar compound linkage mechanism. To solve the problem of the combination of function generation and motion generation, the compound mechanism is divided into three sub-mechanisms. Furthermore, the vector loop equation of the compound mechanism is established and the movability of the mechanism is analyzed. Based on the vector loop equation, we propose a synthesis method to judge the movability and optimize the performance of the mechanism by using the optimization algorithm and kinematic analysis software. Finally, an example is presented to validate the effectiveness of the proposed method. The driving mechanism for the variable sweep aircraft is designed by using the proposed method. The designed mechanism meets the movability requirement and size constraint, and has the minimum envelope area, which prove the effectiveness of the method.

     

  • loading
  • [1]
    董彦非, 陈元恺, 彭金京. 可变后掠翼技术发展与展望[J]. 飞行力学, 2014, 32(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201402001.htm

    DONG Y F, CHEN Y K, PENG J J. Development and prospect of variable swept wing[J]. Flight Dynamics, 2014, 32(2): 97-100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201402001.htm
    [2]
    赵锁珠, 李占科, 张晓刚. 一种无人机变后掠翼机构的设计与仿真研究[J]. 航空计算技术, 2009, 39(6): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200906005.htm

    ZHAO S Z, LI Z K, ZHANG X G. Study of a variable wing sweep mechanism design for unmanned air vehicle[J]. Aeronautical Computing Technique, 2009, 39(6): 21-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200906005.htm
    [3]
    程勇, 董二宝, 许旻, 等. 可变后掠翼机构设计与仿真[J]. 机械与电子, 2010, 28(2): 20-22. doi: 10.3969/j.issn.1001-2257.2010.02.006

    CHENG Y, DONG E B, XU M, et al. Structural design and kinematics simulation for the variable swept wing[J]. Machinery and Electronic, 2010, 28(2): 20-22(in Chinese). doi: 10.3969/j.issn.1001-2257.2010.02.006
    [4]
    陈青欣. 平面多杆机构综合与分析研究[D]. 武汉: 湖北工业大学, 2017: 6-10.

    CHEN Q X. Synthesis and analysis of multi-bar planar linkages[D]. Wuhan: Hubei University of Technology, 2017: 6-10(in Chinese).
    [5]
    RUSSELL K, SODHI R S. Kinematic synthesis of planar five-bar mechanisms for multi-phase motion generation[J]. JSME International Journal, 2004, 47(1): 345-349. doi: 10.1299/jsmec.47.345
    [6]
    SCHREIBER H, MEER K, SCHMITT B J. Dimensional synthesis of planar Stephenson mechanisms for motion generation using circlepoint search and homotopy methods[J]. Mechanism and Machine Theory, 2002, 37(7): 717-737. doi: 10.1016/S0094-114X(02)00016-2
    [7]
    WANG S J, SODHI R S. Kinematic synthesis of adjustable moving pivot four-bar mechanisms for multi-phase motion generation[J]. Mechanism and Machine Theory, 1996, 31(4): 459-474. doi: 10.1016/0094-114X(95)00085-D
    [8]
    崔光珍, 肖艳秋, 王才东, 等. 六杆机构的双目标轨迹综合与运动分析[J]. 机械传动, 2020, 44(12): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202012012.htm

    CUI G Z, XIAO Y Q, WANG C D, et al. Synthesis and kinematic analysis for bi-objective path of six-bar linkage[J]. Journal of Mechanical Transmission, 2020, 44(12): 73-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD202012012.htm
    [9]
    WU R, LI R Q, BAI S P. A fully analytical method for coupler-curve synthesis of planar four-bar linkages[J]. Mechanism and Machine Theory, 2021, 155: 104070. doi: 10.1016/j.mechmachtheory.2020.104070
    [10]
    周洪, 邹慧君. 基于机架杆方向结构误差优化综合曲柄摇杆连续轨迹生成机构[J]. 机械工程学报, 2000, 36(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200005011.htm

    ZHOU H, ZOU H J. Optimal synthesis of crank-rocker linkages for continuous path generation using orientational structural error of the fixed link[J]. Journal of Mechanical Engineering, 2000, 36(5): 42-45(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200005011.htm
    [11]
    陈青欣, 王君, 汪泉, 等. 一种平面曲柄滑块五杆机构的路径生成方法[J]. 湖北工业大学学报, 2017, 32(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201701026.htm

    CHEN Q X, WANG J, WANG Q, et al. A method for the path generation of planar five-bar slider-crank mechanisms[J]. Journal of Hubei University of Technology, 2017, 32(1): 101-104(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201701026.htm
    [12]
    张春, 胡小春, 林佳裔. 平面复合连杆机构设计及可动性分析[J]. 机械设计与制造, 2020(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202001014.htm

    ZHANG C, HU X C, LIN J Y. The design and movability analysis of planar combined bar mechanism[J]. Machinery Design and Manufacture, 2020(1): 48-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202001014.htm
    [13]
    聂良益. 多环平面连杆机构与球面六杆机构的可动性研究[D]. 武汉: 湖北工业大学, 2016: 7-13.

    NIE L Y. Mobility research of the multi-loop planar linkage and spherical six-bar linkage[D]. Wuhan: Hubei University of Technology, 2016: 7-13(in Chinese).
    [14]
    宋杰, 梅瑛, 李瑞琴. 平面3-DOF PRR-RRP型六杆机构的曲柄存在条件[J]. 机械传动, 2013, 37(11): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201311008.htm

    SONG J, MEI Y, LI R Q. Crank existence condition of planar 3-DOF PRR-RRP type six-bar mechanism[J]. Journal of Mechanical Transmission, 2013, 37(11): 32-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201311008.htm
    [15]
    于红英, 唐德威. 平面铰链五杆机构的奇异性研究[J]. 哈尔滨工业大学学报, 2007, 39(3): 381-385. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200703011.htm

    YU H Y, TANG D W. Study on the singularity of a planar five-bar mechanism[J]. Journal of Harbin Institute of Technology, 2007, 39(3): 381-385(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200703011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(254) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return