Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YU Jian, ZHANG Teng, HE Yuting, et al. Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126(in Chinese)
Citation: YU Jian, ZHANG Teng, HE Yuting, et al. Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126(in Chinese)

Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate

doi: 10.13700/j.bh.1001-5965.2021.0126
Funds:

National Natural Science Foundation of China 52005507

National Natural Science Foundation of China 52007197

More Information
  • Corresponding author: ZHANG Teng, E-mail: zhangt_afeu@163.com
  • Received Date: 17 Mar 2021
  • Accepted Date: 05 May 2021
  • Publish Date: 20 Nov 2021
  • Aimed at the fatigue performance of aluminum alloy plate with hybrid adhesive-rivet single-sided patch, specimens with four different methods including un-repair, riveted repair, adhesive repair and adhesive-rivet repair were designed and subjected to fatigue tests. The finite element models of specimens were established, and the structural stress distributions and the crack length-crack tip Stress Intensity Factor (SIF) curves were obtained and compared with the test results. The results show that adhesive repair and adhesive-rivet repair methods can effectively reduce the stress level at the crack and the crack growth rate. Compared with un-repair specimens, the fatigue life of adhesive repair and adhesive-rivet repair methods is increased by 184.3% and 197.3%, respectively. For the adhesive-rivet repair, the rivets can inhibit the debonding of the adhesive layer, and the repair quality of this method is more reliable and effective than that of the adhesive repair method. The Finite Element Analysis (FEA) results are in good agreement with the test results, and the SIF error of FEA is approximately within 8%.

     

  • loading
  • [1]
    赵立涛, 王志瑾. 复合材料胶接修补金属裂纹板的应力强度因子研究[J]. 飞机设计, 2011, 31(2): 67-70. doi: 10.3969/j.issn.1673-4599.2011.02.016

    ZHAO L T, WANG Z J. The study of stress intensity factor of cracked metallic structure repaired with adhesive bonding composite patch[J]. Aircraft Design, 2011, 31(2): 67-70(in Chinese). doi: 10.3969/j.issn.1673-4599.2011.02.016
    [2]
    贺旺, 杜永华, 孙运刚, 等. 复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性[J]. 南京理工大学学报, 2019, 43(4): 511-517. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htm

    HE W, DU Y H, SUN Y G, et al. Static characteristics and fatigue behavior of edge-cracked thick aluminum plates double-side bonded with composite patches[J]. Journal of Nanjing University of Science and Technology, 2019, 43(4): 511-517(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htm
    [3]
    何宇廷. 飞机结构寿命控制原理与技术[M]. 北京: 国防工业出版社, 2017: 346-356.

    HE Y T. Principle and technology of aircraft structure life control[M]. Beijing: National Defense Industry Press, 2017: 346-356(in Chinese).
    [4]
    CHEN Y W, YANG X J, LI M J, et al. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials[J]. Thin-Walled Structures, 2019, 139: 271-280. doi: 10.1016/j.tws.2019.03.007
    [5]
    BAKER A A. Bonded composite repair of fatigue-cracked primary aircraft structure[J]. Composite Structure, 1999, 47(1-4): 431-437. doi: 10.1016/S0263-8223(00)00011-8
    [6]
    董登科, 丁惠梁. 飞机金属结构复合材料修理技术[M]. 北京: 航空工业出版社, 2017: 5-13.

    DONG D K, DING H L. Advances in the bonded composite repair of metallic aircraft structure[M]. Beijing: Aviation Industry Press, 2017: 5-13(in Chinese).
    [7]
    杨孚标. 复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D]. 长沙: 国防科技大学, 2006: 46-60.

    YANG F B. The static characteristics and fatigue properties of the center-cracked aluminum plates bonded with composite patches[D]. Changsha: National University of Defense Technology, 2006: 46-60(in Chinese).
    [8]
    王光建. 单面自冲铆-粘连接工艺的试验研究及数值模拟[D]. 天津: 天津大学, 2008: 1-7.

    WANG G J. Experiment study and numerical simulation of single-sided rivet-bonding process[D]. Tianjin: Tianjin University, 2008: 1-7(in Chinese).
    [9]
    刘璟琳. 胶铆复合接头力学性能及失效机理研究[D]. 大连: 大连理工大学, 2019: 1-4.

    LIU J L. Study on mechanical properties and failure mechanism of hybrid bond-riveted joints[D]. Dalian: Dalian University of Technology, 2019: 1-4(in Chinese).
    [10]
    乔海涛, 赖士洪, 邹贤武. 胶铆连接性能研究[J]. 中国胶粘剂, 2002(1): 52-53. doi: 10.3969/j.issn.1004-2849.2002.01.018

    QIAO H T, LAI S H, ZOU X W. Study on properties of bond-riveted joint[J]. China Adhesives, 2002(1): 52-53(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.018
    [11]
    库克超. CFRP/铝合金胶铆混合连接力学性能及疲劳强度分析[D]. 西安: 西安电子科技大学, 2018: 67-68.

    KU K C. Analysis of mechanical properties and fatigue strength of CFRP/aluminum alloy adhesive-rivet hybrid jointing[D]. Xi'an: Xidian University, 2018: 67-68(in Chinese).
    [12]
    SADOWSKI T, GOLEWSKI P, ZARZEKA R. Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256-1262. doi: 10.1016/j.commatsci.2010.06.022
    [13]
    邹鹏, 倪迎鸽, 毕雪, 等. 胶螺混合连接在复合材料结构中的研究进展[J]. 航空工程进展, 2021, 12(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htm

    ZOU P, NI Y G, BI X, et al. Research development on bonded-bolted hybrid joint in composite structure[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htm
    [14]
    原志翔. 复合材料胶铆混合修理损伤特性实验研究[D]. 天津: 中国民航大学, 2020: 44-51.

    YUAN Z X. Experimental study on damage properties of adhesive-rivet hybrid repair of composite materials[D]. Tianjin: Civil Aviation Universityof China, 2020: 44-51(in Chinese).
    [15]
    PIRONDI A, MORONI F. Clinch-bonded and rivet-bonded hybrid joints: Application of damage models for simulation of forming and failure[J]. Journal of Adhesion Science and Technology, 2009, 23(10-11): 1547-1574. doi: 10.1163/156856109X433063
    [16]
    肖群力, 黄其青, 殷之平. 典型机翼整体壁板止裂特性分析及优化设计[J]. 机械强度, 2012, 34(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htm

    XIAO Q L, HUANG Q Q, YIN Z P. Analysis of crack-arrest property and optimum design for typical integrally stiffened panel[J]. Journal of Mechanical Strength, 2012, 34(1): 92-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htm
    [17]
    全国钢标准化技术委员会. 金属材料疲劳试验轴向力控制方法: GB/T 3075-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2008: 1-13.

    National Technical Committee for Steel Standardization. Metallic materials, fatigue test, axial force control method: GB/T 3075-2008[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2008: 1-13(in Chinese).
    [18]
    王跃, 熊玉平, 赵霞, 等. 含裂纹铝合金板单面修补结构疲劳裂纹扩展分析[J]. 推进技术, 2018, 39(4): 865-871. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm

    WANG Y, XIONG Y P, ZHAO X, et al. Analysis of fatigue crack propagation for repaired aluminum alloy plate containing crack with single patch[J]. Journal of Propulsion Technology, 2018, 39(4): 865-871(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm
    [19]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [20]
    郭历伦, 陈忠富, 罗景润, 等. 扩展有限元方法及应用综述[J]. 力学季刊, 2011, 32(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm

    GUO L L, CHEN Z F, LUO J R, et al. A review of the extended finite element method and its applications[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 612-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm
    [21]
    何龙龙, 刘志芳, 顾俊杰, 等. 基于XFEM的疲劳裂纹扩展路径和寿命预测[J]. 西北工业大学学报, 2019, 37(4): 737-743. doi: 10.3969/j.issn.1000-2758.2019.04.013

    HE L L, LIU Z F, GU J J, et al. Fatigue crack propagation path and life prediction based on XFEM[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 737-743(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(314) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return