Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
PENG Cheng, SUN Liguo, WANG Yanyang, et al. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130(in Chinese)
Citation: PENG Cheng, SUN Liguo, WANG Yanyang, et al. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130(in Chinese)

Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft

doi: 10.13700/j.bh.1001-5965.2021.0130
Funds:

Aeronautical Science Foundation of China 20185702003

More Information
  • Corresponding author: WANG Yanyang, E-mail: wangyanyang@buaa.edu.cn
  • Received Date: 22 Mar 2021
  • Accepted Date: 14 May 2021
  • Publish Date: 15 Jun 2021
  • Pigeon usually flaps and twists its wings by changing the frequency or the amplitude to achieve efficient flying. Inspired by this, to provide a generic design and verification platform for the study of flapping-wing aircraft control laws and control allocation algorithms, a dynamic model of a pigeon-like flapping-wing aircraft with three control inputs is established, and then validated through open-loop and closed-loop simulation. Specifically, the longitudinal multi-rigid nonlinear dynamic model of the pigeon-like flapping-wing aircraft is founded based on Kane equation with the inertial forces and moments of the wings considered. The elevator deflection, the varying amplitude of the wing flapping angle and the varying amplitude of the wing torsion angle are selected as the control inputs, and the control mechanism is then given with a fixed wing-flapping time period. The aerodynamic and control derivatives are calculated in a practical way, and the control oriented linear time-varying periodic system model of the pigeon-like flapping-wing aircraft is finally established. The dynamic stability of the linear time-varying periodic system model is then analyzed based on Floquet theory, which indicates the result obtained is consistent with the subsequent open-loop time-domain simulation results. Finally, the closed-loop simulations are performed and show that the model established in this paper can well reflect the time-varying period dynamic characteristics of the pigeon-like flapping-wing aircraft, and lays a foundation for the study of control laws and allocation algorithms on pigeon-like flapping-wing aircraft.

     

  • loading
  • [1]
    徐韦佳, 姚奎, 宋阿羚, 等. 微型仿生扑翼飞行器研究综述[J]. 信息技术与网络安全, 2020, 39(10): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WXJY202010002.htm

    XU W J, YAO K, SONG A L, et al. Survey of research on small and micro bionic flapping wing aircraft[J]. Information Technology and Network Security, 2020, 39(10): 7-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXJY202010002.htm
    [2]
    向锦武, 孙毅, 申童, 等. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904003.htm

    XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics[J]. Engineering Mechanics, 2019, 36(4): 8-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904003.htm
    [3]
    薛栋, 宋笔锋, 宋文萍, 等. 仿鸟型扑翼飞行器气动/结构/飞行力学耦合研究进展[J]. 空气动力学学报, 2018, 36(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201801016.htm

    XUE D, SONG B F, SONG W P, et al. Advances in coupling aeroelasticity and flight dynamics of bird inspired FMAV[J]. Acta Aerodynamica Sinica, 2018, 36(1): 88-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201801016.htm
    [4]
    昂海松, 肖天航, 郑祥明. 微型飞行器的低雷诺数、非定常气动设计与分析[J]. 无人系统技术, 2018, 1(4): 17-32. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804003.htm

    ANG H S, XIAO T H, ZHENG X M. Design and analysis of low Reynolds number and unsteady aerodynamic based on micro air vehicles[J]. Unmanned Systems Technology, 2018, 1(4): 17-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804003.htm
    [5]
    TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. The Journal of Experimental Biology, 2003, 206(16): 2803-2829. doi: 10.1242/jeb.00501
    [6]
    李智. 扑翼飞行机器人控制系统的设计研究[D]. 北京: 北方工业大学, 2016: 20-31.

    LI Z. Design of flapping wing flight robot control system[D]. Beijing: North China University of Technology, 2016: 20-31(in Chinese).
    [7]
    DIETL J M, GARCIA E. Stability in ornithopter longitudinal flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1157-1163. doi: 10.2514/1.33561
    [8]
    DIETL J M, GARCIA E. Ornithopter control with periodic infinite horizon controllers[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1412-1422. doi: 10.2514/1.52694
    [9]
    KAJAK K M, KARÁSEK M, CHU Q P, et al. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design[J]. Bioinspiration & Biomimetics, 2019, 14(4): 046008.
    [10]
    JIANG T, YANG X S, WANG H W, et al. Longitudinal modeling and control of tailed flapping-wings micro air vehicles near hovering[J]. Journal of Robotics, 2019, 2019: 1-12.
    [11]
    GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1675-1679.
    [12]
    ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J]. AIAA Journal, 2011, 49(5): 969-981.
    [13]
    钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析[J]. 自动化学报, 2022, 48(2): 434-443. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202008.htm

    QIAN C, FANG Y C, LI Y P. Control oriented modeling and singular perturbation analysis in flapping-wing flight[J]. Acta Automatica Sinica, 2022, 48(2): 434-443(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202008.htm
    [14]
    ANDERSEN A, PESAVENTO U, WANG Z J. Analysis of transitions between fluttering, tumbling and steady descent of falling cards[J]. Journal of Fluid Mechanics, 2005, 541: 91-104.
    [15]
    SUN M, WANG J K, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246.
    [16]
    ARMANINI S F, CAETANO J V, DE VISSER C C, et al. Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle[J]. International Journal of Micro Air Vehicles, 2019, 11: 1-24.
    [17]
    年鹏, 宋笔锋, 宣建林, 等. 扑翼飞行器动力系统建模方法[J]. 航空学报, 2021, 42(9): 224646. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109029.htm

    NIAN P, SONG B F, XUAN J L, et al. Modeling method for propulsion system of flapping wing vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224646(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109029.htm
    [18]
    昂海松, 曾锐, 段文博, 等. 柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验[J]. 航空动力学报, 2007, 22(11): 1838-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200711010.htm

    ANG H S, ZENG R, DUAN W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV[J]. Journal of Aerospace Power, 2007, 22(11): 1838-1845(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200711010.htm
    [19]
    夏风. 扑翼微型飞行器动力学建模与控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 12-35.

    XIA F. Research on dynamics modeling and control algorithm of flapping micro aerial vehicle[D]. Harbin: Harbin Institute of Technology, 2007: 12-35(in Chinese).
    [20]
    杨文青, 宋笔锋, 宋文萍. N-S方程数值研究翼型对微型扑翼气动特性的影响[J]. 计算力学学报, 2011, 28(2): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201102011.htm

    YANG W Q, SONG B F, SONG W P. The effect of airfoil to aerodynamics characteristics of flapping wing by numerical simulation on Navier-Stokes equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 214-220(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201102011.htm
    [21]
    方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 214-223.

    FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beihang University Press, 2005: 214-223(in Chinese).
    [22]
    熊超. 微型扑翼飞行器尾翼的分析与设计方法研究[D]. 西安: 西北工业大学, 2007: 29-58.

    XIONG C. Analysis and design methodology of the empennage of the flapping-wing micro air vehicles[D]. Xi'an: Northwestern Polytechnical University, 2007: 29-58(in Chinese).
    [23]
    张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1): 58-64. doi: 10.13700/j.bh.1001-5965.2014.0048

    ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 58-64(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0048
    [24]
    王进, 宋笔锋, 王利光, 等. 一种无级调幅扑翼驱动机构:

    CN102285453A[P]. 2011-12-21. WANG J, SONG B F, WANG L G, et al. Stepless amplitude modulating driving mechanism for flapping wing: CN102285453A[P]. 2011-12-21(in Chinese).
    [25]
    YANG W Q, WANG L G, SONG B F. DOVE: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84.
    [26]
    WU J H, SUN M. Floquet stability analysis of the longitudinal dynamics of two hovering model insects[J]. Journal of the Royal Society Interface, 2012, 9(74): 2033-2046.
    [27]
    HARKEGARD O. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2002: 1295-1300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views(337) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return