Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Weiqi, XING Yuming, ZHENG Wenyuan, et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140(in Chinese)
Citation: WANG Weiqi, XING Yuming, ZHENG Wenyuan, et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140(in Chinese)

Phase change heat transfer characteristics and fractal optimization of radial plate fin tube

doi: 10.13700/j.bh.1001-5965.2021.0140
Funds:

Aeronautical Science Foundation of China 20172851018

More Information
  • Corresponding author: HAO Zhaolong, E-mail: haozhaolong@buaa.edu.cn
  • Received Date: 25 Mar 2021
  • Accepted Date: 14 May 2021
  • Publish Date: 01 Jul 2021
  • Based on the shell and tube phase change heat exchanger, the melting heat transfer characteristics of 35 paraffin outside the rectangular radial plate fin tube were studied by numerical simulation method. The three-dimensional model of fin element was established to study the influence of thermal fluid temperature and fin height parameters on the heat transfer process, and the heat transfer performance of optimal fractal fin was explored. The results show that the melting process can be divided into three stages with different heat transfer rates, which are suitable for different power requirements. Increasing the inlet temperature of the hot fluid and the temperature difference of the phase change material can enhance the total heat transfer power approximately in equal proportion. When the fin height is increased from 10 cm to 12.5 cm and 15 cm, the total melting time is reduced by 42.89% and 71.96%, and the heat transfer is enhanced, but the power to weight ratio is reduced. The total melting time is reduced by 41.95% with fractal structure optimization and the power is increased, which provides a reference for the optimal design of phase change finned tube.

     

  • loading
  • [1]
    MAZHAR A R, SHUKLA A, LIU S L. Numerical analysis of rectangular fins in a PCM for low-grade heat harnessing[J]. International Journal of Thermal Sciences, 2020, 152: 106306. doi: 10.1016/j.ijthermalsci.2020.106306
    [2]
    MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14-15): 1652-1661. doi: 10.1016/j.applthermaleng.2005.11.022
    [3]
    SHAIKH S, LAFDI K. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage[J]. Energy Conversion and Management, 2006, 47(15-16): 2103-2117. doi: 10.1016/j.enconman.2005.12.012
    [4]
    TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. doi: 10.1016/j.rser.2018.05.028
    [5]
    赵亮, 邢玉明, 吕倩, 等. 纳米复合相变材料熔化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712

    ZHAO L, XING Y M, LYU Q, et al. Numerical simulation of melting process of nanoparticle-enhanced phase change materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1860-1868(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0712
    [6]
    赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [7]
    JUN F K, HAMADA Y, MOROZUMI Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling[J]. International Journal of Heat and Mass Transfer, 2003, 46(23): 4513-4525. doi: 10.1016/S0017-9310(03)00290-4
    [8]
    GVREL B. Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger[J]. Applied Thermal Engineering, 2020, 174: 115312. doi: 10.1016/j.applthermaleng.2020.115312
    [9]
    尹点. 板片式相变储能换热器的数值模拟及其实验研究[D]. 长沙: 中南林业科技大学, 2017: 17-39.

    YIN D. A numerical simulation and experimental investigation of a plate-type phase change energy storage heat exchanger[D]. Changsha: Central South University of Forestry & Technology, 2017: 17-39(in Chinese).
    [10]
    董琼. 中低温相变材料的储热结构分析与数值模拟[D]. 武汉: 武汉理工大学, 2014: 20-59.

    DONG Q. Structural analysis and numerical simulation of thermal storage equipment on mid-low temperature phase change material[D]. Wuhan: Wuhan University of Technology, 2014: 20-59(in Chinese).
    [11]
    ERMIS K, EREK A, DINCER I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J]. International Journal of Heat and Mass Transfer, 2007, 50(15-16): 3163-3175. doi: 10.1016/j.ijheatmasstransfer.2006.12.017
    [12]
    HOSSEINZADEH K, MOGHADDAM M A E, ASADI A, et al. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation[J]. Renewable Energy, 2020, 154: 497-507. doi: 10.1016/j.renene.2020.03.054
    [13]
    ALIZADEH M, HOSSEINZADEH K, SHAHAVI M H, et al. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material[J]. Applied Thermal Engineering, 2019, 163: 168-173.
    [14]
    KHAN Z, KHAN Z A. An experimental investigation of discharge/solidification cycle of paraffin in novel shell and tube with longitudinal fins based latent heat storage system[J]. Energy Conversion and Management, 2017, 154: 157-167. doi: 10.1016/j.enconman.2017.10.051
    [15]
    LIU S, PENG H, HU Z W, et al. Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins[J]. International Journal of Heat and Mass Transfer, 2019, 138: 667-676. doi: 10.1016/j.ijheatmasstransfer.2019.04.121
    [16]
    欧阳梅. 针翅管式相变蓄热换热性能的数值模拟[D]. 重庆: 重庆大学, 2009: 22-34.

    OUYANG M. Numerical simulation on heat transfer performance of pin-finned tube phase change heat storage unit[D]. Chongqing: Chongqing University, 2009: 22-34(in Chinese).
    [17]
    LI D, YANG C X, YANG H. Experimental and numerical study of a tube-fin cool storage heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 712-722. doi: 10.1016/j.applthermaleng.2018.12.024
    [18]
    徐灏. 分形结构换热器中PCM熔化传热特性研究[D]. 苏州: 苏州科技大学, 2019: 12-21.

    XU H. Study on heat transfer characteristics of PCM melting in a fractal heat exchanger[D]. Suzhou: Suzhou University of Science and Technology, 2019: 12-21(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(308) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return