Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Wei, WANG Qiang, LU Jiachen, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142(in Chinese)
Citation: ZHANG Wei, WANG Qiang, LU Jiachen, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142(in Chinese)

Robust optimization design under geometric uncertainty based on PCA-HicksHenne method

doi: 10.13700/j.bh.1001-5965.2021.0142
Funds:

National Natural Science Foundation of China 11721202

National Natural Science Foundation of China 11972064

More Information
  • Corresponding author: YAN Chao, E-mail: yanchao@buaa.edu.cn
  • Received Date: 25 Mar 2021
  • Accepted Date: 13 Jun 2021
  • Publish Date: 21 Jun 2021
  • The aerodynamic shape design of an aircraft requires a robust optimization approach that takes uncertainty into account. To the knowledge of the authors, research efforts were more paid to the robust optimization considering environmental perturbations, rather than geometric perturbations. For purpose of quantifying the geometric uncertainty, the principal component analysis (PCA) method was utilized to perform research on the parameterization process of the RAE2822 airfoil. The main geometric transformation modes of the airfoil were revealed subsequently. After that, the sensitivity analysis method was applied, and the thickness deformation mode, the camber deformation mode, and the axial displacement mode of the maximum thickness position on the upper surface were indicated as the main influential modes. Those modes were taken as the perturbation modes in the following robust optimization research. The results show that the lift variation of the deterministic optimal airfoil without consideration of perturbation is much huger, with the standard deviation increased by about 200%. However, the optimal airfoil considering geometric perturbation is more robust. The robust airfoil's variability, whether in lift or drag, are lower than those of the original RAE2822 airfoil along with the improvement in mean performance.

     

  • loading
  • [1]
    蒙文巩, 马东立. 飞机系列机翼气动特性稳健匹配优化设计[J]. 北京航空航天大学学报, 2013, 39(1): 126-131. https://bhxb.buaa.edu.cn/bhzk/article/id/12516

    MENG W G, MA D L. Robust matching design optimization for wing aerodynamic characteristic of aircraft family[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 126-131(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/12516
    [2]
    山美娟, 赵丽滨. 基于可靠性的CFRP螺栓连接优化设计方法[J]. 北京航空航天大学学报, 2021, 47(11): 2249-2255. doi: 10.13700/j.bh.1001-5965.2020.0425

    SHAN M J, ZHAO L B. Reliability-based design optimization method of CFRP bolted joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2249-2255(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0425
    [3]
    李焦赞, 高正红. 基于几何不确定性的翼型多目标稳健优化设计[J]. 力学学报, 2011, 43(3): 611-615. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103022.htm

    LI J Z, GAO Z H. Multi objective optimization methodology for airfoil robust design under geometry uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103022.htm
    [4]
    宋鑫, 郑冠男, 杨国伟, 等. 几何不确定性区间分析及鲁棒气动优化设计[J]. 北京航空航天大学学报, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077

    SONG X, ZHENG G N, YANG G W, et al. Interval analysis for geometric uncertainty and robust aerodynamic optimization design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2217-2227(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0077
    [5]
    赵青, 王惠文, 王珊珊. 基于中心-对数半长的区间数据主成分分析[J]. 北京航空航天大学学报, 2021, 47(7): 1414-1421. doi: 10.13700/j.bh.1001-5965.2020.0227

    ZHAO Q, WANG H W, WANG S S. A principal component analysis of interval data based on center and log-radius[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1414-1421(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0227
    [6]
    蒋晨琛, 霍宏涛, 冯琦. 一种基于PCA的面向对象多尺度分割优化算法[J]. 北京航空航天大学学报, 2020, 46(6): 1192-1203. doi: 10.13700/j.bh.1001-5965.2019.0398

    JIANG C C, HUO H T, FENG Q. An object-oriented multi-scale segmentation optimization algorithm based on PCA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1192-1203(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0398
    [7]
    鞠胜军. 结合转捩的精细化气动优化设计方法研究[D]. 北京: 北京航空航天大学, 2018: 16-28.

    JU S J. Numerical research o detail aerodynamic optimization design with transition prediction[D]. Beijing: Beihang University, 2018: 16-28(in Chinese).
    [8]
    张扬, 白俊强, 朱军, 等. 改进Hicks-Henne型函数法在翼型参数化中的应用[J]. 飞行力学, 2011, 29(5): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201105009.htm

    ZHANG Y, BAI J Q, ZHU J, et al. Application of improved Hicks-Henne shape function to airfoil parameterization[J]. Flight Dynamics, 2011, 29(5): 35-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201105009.htm
    [9]
    李静. 高性能飞行器气动外形设计方法研究与应用[D]. 西安: 西北工业大学, 2014: 41-43.

    LI J. Research on aerodynamic configuration design methods for high performance aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014: 41-43(in Chinese).
    [10]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 229-232.

    ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 229-232(in Chinese).
    [11]
    JU S J, YAN C, WANG X Y, et al. Sensitivity analysis of geometric parameters upon the aerothermodynamic performances of Mars entry vehicle[J]. International Journal of Heat and Mass Transfer, 2018, 120: 597-607. https://www.sciencedirect.com/science/article/pii/S0017931017328053
    [12]
    ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820.
    [13]
    ZHANG W, WANG S, WANG Q, et al. Reverse jet parameters study on aerodynamic thermal uncertainty of a blunt body[J]. Aerospace Science and Technology, 2020, 107: 106260.
    [14]
    ZHANG W, WANG Q, YAN C. An intelligent polynomial chaos expansion method based upon features selection[J]. Journal of Physics: Conference Series, 2021, 1786(1): 012046.
    [15]
    张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014, 5(3): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201403004.htm

    ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 281-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201403004.htm
    [16]
    王胜, 王强, 林博希, 等. 类X-51A飞行器纵向机动数值虚拟飞行仿真[J]. 北京航空航天大学学报, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618

    WANG S, WANG Q, LIN B X, et al. Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0618
    [17]
    LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology, 2019, 93: 105345.
    [18]
    SHEN Y, HUANG W, ZHANG T T, et al. Parametric modeling and aerodynamic optimization of EXPERT configuration at hypersonic speeds[J]. Aerospace Science and Technology, 2019, 84: 641-649. https://www.sciencedirect.com/science/article/pii/S127096381832203X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(7)

    Article Metrics

    Article views(281) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return