Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Tao, ZHANG Wanxin, LI Meng, et al. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143(in Chinese)
Citation: WANG Tao, ZHANG Wanxin, LI Meng, et al. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143(in Chinese)

Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model

doi: 10.13700/j.bh.1001-5965.2021.0143
Funds:

Foundation of National Key Laboratory of Human Factors Engineering 6142222180502

More Information
  • Corresponding author: ZHANG Wanxin, E-mail: zhangwanxin-2009@163.com
  • Received Date: 25 Mar 2021
  • Accepted Date: 23 Apr 2021
  • Publish Date: 21 Jun 2021
  • A human body thermoregulation model is designed to describe heat transfer from a human body to the environment, and predict thermal physiological parameters. This model is composed of a passive system and a thermoregulation system. The passive system employs the Tanabe model, consisting of 65 multi-nodes by dividing the human body into 16 segments, each of which has four layers: core, muscle, fat and skin. The 65th node is a blood pool transferring heat with each tissue layer. Pennes' bio-thermal equations are employed in each node to calculate heat exchange. In the thermoregulation system, the empirical control equations developed from the physiological experimental data in Smith's model are used to represent the three basal thermoregulation control modes of vasomotion, sweating and shivering in human bodies. The maximum absolute error between the simulation and experimental data is less than 0.8 ℃, and the mean value of the absolute error is about 0.5 ℃. The tests show that the proposed model based on Smith's and Tanabe's models can effectively predict skin temperature under the operating condition of this study.

     

  • loading
  • [1]
    SCHELLEN L, LOOMANS M G L C, KINGMA B R M, et al. The use of a thermophysiological model in the built environment to predict thermal sensation: Coupling with the indoor environment and thermal sensation[J]. Building and Environment, 2013, 59: 10-22. doi: 10.1016/j.buildenv.2012.07.010
    [2]
    KATIĆ K, LI R L, ZEILER W. Thermophysiological models and their applications: A review[J]. Building and Environment, 2016, 106: 286-300. doi: 10.1016/j.buildenv.2016.06.031
    [3]
    LI Y, LI F Z, LIU Y X, et al. An integrated model for simulating interactive thermal processes in human-clothing system[J]. Journal of Thermal Biology, 2004, 29(7-8): 567-575. doi: 10.1016/j.jtherbio.2004.08.071
    [4]
    BURTON A C. The application of the theory of heat flow to the study of energy metabolism: Five figures[J]. The Journal of Nutrition, 1934, 7(5): 497-533. doi: 10.1093/jn/7.5.497
    [5]
    GAGGE A P, STOLWIJK A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transaction, 1971, 77(1): 247-262.
    [6]
    WHITTOW G C. Comparative physiology of thermoregulation[M]. New York: Academic Press, 1971: 327-380.
    [7]
    SMITH C E. A transient, three-dimensional model of the human thermal system[D]. Kansas: Kansas State University, 1991: 718-724.
    [8]
    FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159. doi: 10.1007/s004840100099
    [9]
    HUIZENGA C, HUI Z, ARENS E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building and Environment, 2001, 36(6): 691-699. doi: 10.1016/S0360-1323(00)00061-5
    [10]
    ZHANG H, HUIZENGA C, ARENS E, et al. Considering individual physiological differences in a human thermal model[J]. Journal of Thermal Biology, 2001, 26(4-5): 401-408. doi: 10.1016/S0306-4565(01)00051-1
    [11]
    TANABE S I, KOBAYASHI K, NAKANO J, et al. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy and Buildings, 2002, 34(6): 637-646. doi: 10.1016/S0378-7788(02)00014-2
    [12]
    LAI D Y, CHEN Q Y. A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment[J]. Energy and Buildings, 2016, 118: 114-122. doi: 10.1016/j.enbuild.2016.02.051
    [13]
    DAVOODI F, HASSANZADEH H, ZOLFAGHARI S A, et al. A new individualized thermoregulatory bio-heat model for evaluating the effects of personal characteristics on human body thermal response[J]. Building and Environment, 2018, 136: 62-76. doi: 10.1016/j.buildenv.2018.03.026
    [14]
    KANG Z X, WANG F M, UDAYRA J. An advanced three-dimensional thermoregulation model of the human body: Development and validation[J]. International Communications in Heat and Mass Transfer, 2019, 107: 34-43. doi: 10.1016/j.icheatmasstransfer.2019.05.006
    [15]
    范路. 人体热调节模型综述及其发展讨论[J]. 节能, 2020, 39(4): 172-176. doi: 10.3969/j.issn.2095-0802.2020.04.076

    FAN L. Human thermoregulatory models and their development: A review[J]. Energy Conservation, 2020, 39(4): 172-176(in Chinese). doi: 10.3969/j.issn.2095-0802.2020.04.076
    [16]
    倪冬香. 基于人体热调节模型的轿车乘员舱热舒适性分析[D]. 上海: 上海交通大学, 2010: 723-730.

    NI D X. Thermal comfort study in automobile passenger compartment based on human thermoregulation model[D]. Shanghai: Shanghai Jiao Tong University, 2010: 723-730(in Chinese).
    [17]
    TANG Y L, HE Y, SHAO H W, et al. Assessment of comfortable clothing thermal resistance using a multi-scale human thermoregulatory model[J]. International Journal of Heat and Mass Transfer, 2016, 98: 568-583. doi: 10.1016/j.ijheatmasstransfer.2016.03.030
    [18]
    陈吉清, 郑习娇, 兰凤崇, 等. 基于人体热调节模型的乘员舱热舒适性分析[J]. 汽车工程, 2019, 41(6): 723-730. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906018.htm

    CHEN J Q, ZHENG X J, LAN F C, et al. An analysis on thermal comfort in passenger compartment based on human thermal regulation model[J]. Automotive Engineering, 2019, 41(6): 723-730(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906018.htm
    [19]
    马景辉, 魏厚福, 杨艺真, 等. 基于人体热调节模型的局部辐射温度对热舒适的影响[J]. 浙江理工大学学报(自然科学版), 2020, 43(1): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG202001019.htm

    MA J H, WEI H F, YANG Y Z, et al. Effect of local radiant temperature on thermal comfort based on human thermoregulation model[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(1): 130-135(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG202001019.htm
    [20]
    RIDA M, KELLY N. Toward better estimation of HVAC loads: Integrating a detailed human thermal model into building simulation[J]. Energy Procedia, 2017, 122: 1147-1152. doi: 10.1016/j.egypro.2017.07.455
    [21]
    ZHAO J P, WANG H Q, LI Y G, et al. Heatstroke recovery at home as predicted by human thermoregulation modeling[J]. Building and Environment, 2020, 173: 106752. doi: 10.1016/j.buildenv.2020.106752
    [22]
    WANG F M, GORDON C. Assessing and modeling the thermal impact of the human-clothing environment[J]. Journal of Thermal Biology, 2017, 70: 1.
    [23]
    YANG J, WENG W G, FU M. Coupling of a thermal sweating manikin and a thermal model for simulating human thermal response[J]. Procedia Engineering, 2014, 84: 893-897. doi: 10.1016/j.proeng.2014.10.512
    [24]
    YANG J, NI S J, WENG W G. Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model[J]. International Journal of Thermal Sciences, 2017, 120: 437-445. doi: 10.1016/j.ijthermalsci.2017.06.028
    [25]
    IVANOV K P. The development of the concepts of homeothermy and thermoregulation[J]. Journal of Thermal Biology, 2006, 31(1-2): 24-29. doi: 10.1016/j.jtherbio.2005.12.005
    [26]
    QIAN X M, FAN J T. Interactions of the surface heat and moisture transfer from the human body under varying climatic conditions and walking speeds[J]. Applied Ergonomics, 2006, 37(6): 685-693. doi: 10.1016/j.apergo.2006.01.002
    [27]
    UMENO T. Prediction of skin and clothing temperatures under thermal transient considering moisture accumulation in clothing[J]. ASHRAE Transaction, 2001, 107: 71-81.
    [28]
    FU G Z. A transient, 3-D mathematical thermal model for the clothed human[D]. Kansas: Kansas State University, 1995: 61-63.
    [29]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热环境人类工效学代谢率的测定: GB/T 18048—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Ergonomics of the thermal environment-Determination of metabolic rate: GB/T 18048—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(283) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return