Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
XU Haiying, YANG Guang, ZHANG Wei, et al. Properties of gas discharge electron beam coaxial wire of fuse additive manufacturing and microstructure of TC4 titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2373-2380. doi: 10.13700/j.bh.1001-5965.2021.0147(in Chinese)
Citation: XU Haiying, YANG Guang, ZHANG Wei, et al. Properties of gas discharge electron beam coaxial wire of fuse additive manufacturing and microstructure of TC4 titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2373-2380. doi: 10.13700/j.bh.1001-5965.2021.0147(in Chinese)

Properties of gas discharge electron beam coaxial wire of fuse additive manufacturing and microstructure of TC4 titanium alloy

doi: 10.13700/j.bh.1001-5965.2021.0147
Funds:

National Natural Science Foundation of China 51775527

More Information
  • Corresponding author: XU Haiying, E-mail: xhyxhy@126.com
  • Received Date: 25 Mar 2021
  • Accepted Date: 25 Jun 2021
  • Publish Date: 16 Aug 2021
  • Based on the analysis of fuse additive manufacturing using hot cathode electron beams with axial side feeding wires and gas discharge electron beam coaxial wire, the characteristics of droplet transfer of the gas discharge electron beam coaxial wire fuse additive manufacturing have been analyzed, and the conditions for obtaining droplet transfer and bridging transfer are also studied. A TC4 titanium alloy sample is made by gas discharge electron beam coaxial wire of fuse additive manufacturing by the mode of droplet bridging of Φ2 mm TC4 wire. The microstructure of the sample is compared with that manufactured by hot cathode electron beam fuse additive. Results show that the columnar and equiaxed grains of the sample overlap alternately layer by layer with an obvious decrease in their sizes, indicating that the sample grains of the sample are refined and that its mechanical properties can be improved.

     

  • loading
  • [1]
    尹凡, 王克鸿, 冯曰海, 等. 电弧填丝增材制造的宽度尺寸建模及分析[J]. 机械制造与自动化, 2018, 47(3): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201803029.htm

    YIN F, WANG K H, FENG Y H, et al. Width dimension modeling and analysis of wire and arc additive manufacture[J]. Machine Building & Automation, 2018, 47(3): 119-122(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201803029.htm
    [2]
    曹嘉明. 电弧熔丝增材制造高强钢零件工艺基础研究[D]. 武汉: 华中科技大学, 2017.

    CAO J M. Fundamental study on wire and arc additive manufacturing technique for high strength steel components[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese).
    [3]
    王帅, 顾惠敏, 王伟, 等. ZL205A电弧熔丝增材制造堆积体的组织与性能[J]. 稀有金属材料与工程, 2019, 48(9): 2910-2916. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201909028.htm

    WANG S, GU H M, WANG W, et. al. Microstructure and mechanical properties of ZL205A aluminum alloy wall produced by wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2910-2916(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201909028.htm
    [4]
    方力, 侯智文, 黄俊润, 等. 电弧熔丝增材制造复合填充路径规划算法[J]. 南京航空航天大学学报, 2019, 51(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201901015.htm

    FANG L, HOU Z W, HUANG J R, et al. Composite filling path planning algorithm for wire and ARC additive manufacturing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(1): 98-104(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201901015.htm
    [5]
    郭一蒙. 铝合金激光熔丝增材制造工艺研究[D]. 南京: 南京理工大学, 2018.

    GUO Y M. The laser additive manufacturing technology of aluminum alloy with melting wire[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).
    [6]
    黄安国, 刘博, 郑增超, 等. 激光熔丝增材制造丝材过渡状态的电磁振动监测方法[J]. 机械工程学报, 2018, 54(2): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201802005.htm

    HUANG A G, LIU B, ZHENG Z C, et al. Electromagnetic vibration monitoring method for liquid transfer mode in wire feeding based laser additive manufacturing[J]. Journal of Mechanical Engineering, 2018, 54(2): 34-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201802005.htm
    [7]
    李慧敏. 激光熔丝增材制造工艺特性研究[D]. 重庆: 重庆大学, 2017.

    LI H M. Study on the process characteristics of wire based laser additive manufacturing[D]. Chongqing: Chongqing University, 2017(in Chinese).
    [8]
    刘思余, 冯曰海, 占彬, 等. 堆覆速度对等离子弧双填丝增材制造碳钢堆覆层组织和性能的影响[J]. 机械工程材料, 2018, 42(9): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201809016.htm

    LIU S Y, FENG Y H, ZHAN B, et al. Effect of deposition speed on microstructure and properties of double-wire and plasma arc additive manufactured carbon steel stacking layer[J]. Materials for Mechanical Engineering, 2018, 42(9): 69-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201809016.htm
    [9]
    陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201808027.htm

    CHEN G Q, SHU X, ZHANG B G, et al. Development status of electron beam fuse deposition additive manufacturing technology at home and abroad[J]. Transactions of the China Welding Institution, 2018, 39(8): 123-128(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201808027.htm
    [10]
    巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201313017.htm

    GONG S L, SUO H B, LI H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manu-facturing Technology, 2013(13): 66-71(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201313017.htm
    [11]
    DENBNOVETSKY S V, MELNYK V G, MELNYK I V. High-voltage, glow-discharge electron sources and possibilities of its application in industry for realizing different technological operations[J]. IEEE Transactions on Plasma Science, 2003, 31(5): 987-993.
    [12]
    DENBNOVETSKY S V, MELNYK I V, MELNYK V G, et al. High voltage glow discharge electron guns and its advanced application examples in electronic industry[C]//2016 International Conference "Radio Electronics & Info Communications". Piscataway: IEEE Press, 2016: 16450310.
    [13]
    FEINAEUGLE P, MATTAUSCH G, SCHMIDT S, et al. A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD[C]//Society of Vacuum Coaters 54th Annual Technical Conference Proceedings, 2011.
    [14]
    ZHANG J H, YANG Y, CAO S, et al. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing[J]. Acta Metallurgica Sinica(English Letters), 2020, 33(10): 1311-1320.
    [15]
    叶焕中. 电弧焊及电渣焊[M]. 2版. 北京: 机械工业出版社, 1988.

    YE H Z. Arc welding and electroslag welding[M]. 2nd ed. Beijing: China Machine Press, 1988(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(256) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return