Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LI Yongchang, DAI Yuting, YANG Chaoet al. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151(in Chinese)
Citation: LI Yongchang, DAI Yuting, YANG Chaoet al. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151(in Chinese)

Fluid and structure coupling analysis of split drag rudder

doi: 10.13700/j.bh.1001-5965.2021.0151
Funds:

National Natural Science Foundation of China 11672018

More Information
  • Corresponding author: DAI Yuting, E-mail: yutingdai@buaa.edu.cn
  • Received Date: 29 Mar 2021
  • Accepted Date: 20 Apr 2021
  • Publish Date: 01 Jun 2021
  • To explore the flow field morphology and fluid-structure coupling mechanism of split drag rudder, computational fluid dynamics (CFD) method is used to calculate the SDR flow field with different crack angles. Based on the dynamic mode decomposition (DMD) method, the flow characteristics and frequency variations of each mode are analyzed. Results show that at the crack angle of 20°, the flow field structure around the wing is mainly composed of the standing vortex in the crack area and the trailing edge shedding vortex, and that the modal frequencies increase with the increase of incoming flow velocity and decrease with the increase of the crack angle. Then the fluid-structure interaction of SDR with different crack angles is calculated. The results show that with the increase of the reduction velocity, the fluid-structure interaction mode of the system develops from the vortex induced vibration to flow instability, and that the instability boundary of the system increases with the increase of the crack angle.

     

  • loading
  • [1]
    STENFELT G, RINGERTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009, 46(6): 2161-2164. doi: 10.2514/1.41092
    [2]
    BRITT R T, JACOBSON S B, ARTHURS T D. Aeroservoelastic analysis of the B-2 bomber[J]. Journal of Aircraft, 2000, 37(5): 745-752. doi: 10.2514/2.2674
    [3]
    NATARAJAN A, KAPANIA R K, INMAN D J. Aeroelastic optimization of adaptive bumps for yaw control[J]. Journal of Aircraft, 2004, 41(1): 175-185. doi: 10.2514/1.477
    [4]
    马超, 李林, 王立新. 大展弦比飞翼布局飞机新型操纵面设计[J]. 北京航空航天大学学报, 2007, 33(2): 149-153. https://bhxb.buaa.edu.cn/bhzk/article/id/9622

    MA C, LI L, WANG L X. Design of innovative control surfaces of flying wing aircrafts with large ratio aspect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2): 149-153(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/9622
    [5]
    SIMON J, BLAKE W, MULTHOPP D. Control concepts for a vertical tailless fighter[C]//Aircraft Design, Systems, and Operations Meeting. Reston: AIAA, 1993: 4000.
    [6]
    MOHAMAD F, WISNOE W, NASIR R E M, et al. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation[J]. AIP Conference Proceedings, 2012, 1440(1): 324-329. doi: 10.1063/1.4704233
    [7]
    张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究[J]. 实验流体力学, 2010, 24(3): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201003013.htm

    ZHANG Z J, LI J, LI T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201003013.htm
    [8]
    刘其琛, 李道春, 刘凯, 等. 开裂式阻力方向舵非定常气动特性研究[C]//第九届全国流体力学学术会议, 2014: 337.

    LIU Q C, LI D C, LIU K, et al. Research on unsteady aerodynamic characteristics of the cracked drag rudder[C]//Ninth National Academic Conference on Fluid Dynamics, 2014: 337(in Chinese).
    [9]
    韩鹏, 吴志刚, 杨超. 开裂角对阻力方向舵颤振特性的影响[J]. 航空科学技术, 2014, 25(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201410009.htm

    HAN P, WU Z G, YANG C. Effect of different split angles on flutter velocity of split drag rudder[J]. Aeronautical Science & Technology, 2014, 25(10): 26-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201410009.htm
    [10]
    LUMLEY J L. The structure of inhomogeneous turbulence[C]//Atmospheric Turbulence and Wave Propagation, 1967: 166-178.
    [11]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2008, 656: 5-28.
    [12]
    SCHMID P J, LI L, JUNIPER M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1-4): 249-259. doi: 10.1007/s00162-010-0203-9
    [13]
    DEBESSE P, PASTUR L, LUSSEYRAN F, et al. A comparison of data reduction techniques for the aeroacoustic analysis of flow over a blunt flat plate[J]. Theoretical and Computational Fluid Dynamics, 2016, 30(3): 253-274. doi: 10.1007/s00162-015-0375-4
    [14]
    GHOMMEM M, PRESHO M, CALO V M, et al. Mode decomposition methods for flows in high-contrast porous media. Global-local approach[J]. Journal of Computational Physics, 2013, 253: 226-238. doi: 10.1016/j.jcp.2013.06.033
    [15]
    潘翀, 陈皇, 王晋军. 复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议, 2010: 77-82.

    PAN C, CHEN H, WANG J J. Dynamic mode decomposition of cpmplex flow field[C]//Eighth Annual Meeting of Experiment Fluid Dynamics, 2010: 77-82(in Chinese).
    [16]
    寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802001.htm

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802001.htm
    [17]
    ROWLEY C W, MEZI I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. doi: 10.1017/S0022112009992059
    [18]
    韩亚东, 谭磊. 文丘里管空化流动的试验研究及动力学模态分解[J]. 机械工程学报, 2019, 55(18): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918022.htm

    HAN Y D, TAN L. Experiment and dynamic mode decomposition of cavitating flow in venturi[J]. Journal of Mechanical Engineering, 2019, 55(18): 173-179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918022.htm
    [19]
    MENON K, MITTAL R. Dynamic mode decomposition based analysis of flow over a sinusoidally pitching airfoil[J]. Journal of Fluids and Structures, 2020, 94: 102886. https://www.sciencedirect.com/science/article/pii/S2095034915300118
    [20]
    GENG F, KALKMAN I, SUIKER A S J, et al. Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35×105[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 315-332. https://www.sciencedirect.com/science/article/pii/S0167610518301806
    [21]
    LEE T, GERONTAKOS P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/investigation-of-flow-over-an-oscillating-airfoil/2B4B4BBD890CB2DA0085DC8ABC75674A
    [22]
    李新涛, 张伟伟, 蒋跃文, 等. 弹性支撑圆柱绕流稳定性分析[J]. 力学学报, 2015, 47(5): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505019.htm

    LI X T, ZHANG W W, JIANG Y W, et al. Stability analysis of flow past an elastically-suspended circular cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 874-880(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505019.htm
    [23]
    POIREL D, HARRIS Y, BENAISSA A. Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[J]. Journal of Fluids and Structures, 2008, 24(5): 700-719. https://www.sciencedirect.com/science/article/pii/S0889974607001089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(330) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return