Volume 48 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
PENG Chaoyong, XU Songbai, DU Chuangzhou, et al. Ultrasonic phased array imaging on aviation aluminum block fatigue crack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161(in Chinese)
Citation: PENG Chaoyong, XU Songbai, DU Chuangzhou, et al. Ultrasonic phased array imaging on aviation aluminum block fatigue crack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161(in Chinese)

Ultrasonic phased array imaging on aviation aluminum block fatigue crack

doi: 10.13700/j.bh.1001-5965.2021.0161
Funds:

National Natural Science Foundation of China 61501381

More Information
  • Corresponding author: PENG Chaoyong, E-mail: pengmd@163.com
  • Received Date: 01 Apr 2021
  • Accepted Date: 14 May 2021
  • Publish Date: 26 May 2021
  • Surface breaking fatigue crack propagation can lead to structural failure. The phased array ultrasonic imaging technology is used to monitor fatigue cracks and can obtain the crack information required for structural integrity evaluation. For the purpose of evaluating the structural integrity of a structure, fatigue cracks are monitored using the phased array ultrasonic imaging technique, which may also collect the crack information needed. It can promptly provide safety warnings before structural failures. The three-point bending fatigue test method is used to grow fatigue crack on an aviation aluminum test block. Fatigue cracks of different lengths are obtained by gradually cutting the material awayfrom the crack mouth surface. Phased array ultrasonic full matrix capture (FMC) and total focusing method (TFM) are applied by using fatigue crack tip and mouth image information to monitor crack growth and measure crack length. The test influences on ultrasonic imaging of phased array ultrasonic probe positioning, fatigue crack opening/closing, crack surface roughness are also carried out. The results show that the ultrasonic probe can better image the crack when irradiated from the side of the crack, which can truly reflect the morphology of the crack front inside the material. When the fatigue crack length is more than 3 times the ultrasonic length, the image of the crack tip and crack mouth is totally separated, the phased array ultrasonic FMC/TFM imaging technology can effectively measure the crack length, and the measurement error is less than 0.2 mm. Compared with being opened, the fatigue crack closing effect can weaken the reflection of the ultrasonic image signal at the crack tip by 4.5 dB, and the length measurement value is 0.6 mm smaller.

     

  • loading
  • [1]
    COLLINS J. Failure of materials in mechanical design: Analysis, prediction, prevention[M]. New York: John Wiley & Sons Inc, 1993.
    [2]
    SIERADZKI K, NEWMAN R. Stress-corrosion cracking[J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1101-1113. doi: 10.1016/0022-3697(87)90120-X
    [3]
    WOODTLI J, KIESELBACH R. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis, 2000, 7(6): 427-450. doi: 10.1016/S1350-6307(99)00033-3
    [4]
    CAMPBELL F. Elements of metallurgy and engineering alloys[M]. Cleveland: ASM International, 2008.
    [5]
    KULKARNI S, ACHENBACH J. Structural health monitoring and damage prognosis in fatigue[J]. Structural Health Monitoring-An International Journal, 2008, 7(1): 37-49. doi: 10.1177/1475921707081973
    [6]
    ZHAO Y, YANG B. Scale-induced effects on fatigue properties of the cast steel for Chinese railway rolling wagon bogie frames[J]. Advanced Materials Research, 2010, 118-120(1): 59-64.
    [7]
    KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
    [8]
    SCHIJVE J. Fatigue of structures and materials[M]. Berlin: Springer, 2009.
    [9]
    ALMOND D, WEELES B, LI T, et al. Thermographic techniques for the detection of cracks in metallic components[J]. Insight, 2011, 53(11): 614-620. doi: 10.1784/insi.2011.53.11.614
    [10]
    LIM H, KIM Y, KOO G, et al. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition[J]. Smart Materials and Structures, 2016, 25(9): 1-14.
    [11]
    CHENG J, POTTER J, CROXFORD A, et al. Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging[J]. Smart Materials and Structures, 2017, 26(5): 1-14.
    [12]
    QUAEGEBEUR N, BOUSLAMA N, BILODEAU M, et al. Guided wave scattering by geometrical change or damage: Application to characterization of fatigue crack and machined notch[J]. Ultrasonics, 2017, 73(1): 187-195.
    [13]
    HOLMES C, DRINKWATER B, WILCOX P. Postprocessing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation[J]. NDT & E International, 2005, 38(8): 701-711.
    [14]
    CAMACHO J, ATEHORTUA D, CRUZA J, et al. Ultrasonic crack evaluation by phase coherence processing and TFM and its application to online monitoring in fatigue tests[J]. NDT & E International, 2018, 93(10): 164-174.
    [15]
    ZHANG J, DRINKWATER B, WILCOX P, et al. Defect detection using ultrasonic arrays: The multi-mode total focusing method[J]. NDT & E International, 2010, 43(2): 123-133.
    [16]
    ZHANG J, DRINKWATER B, WILCOX P. Efficient immersion imaging of components with nonplanar surfaces[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2014, 61(8): 1284-1295. doi: 10.1109/TUFFC.2014.3035
    [17]
    SHAKIBI B, HONARVAR F, MOLES M, et al. Resolution enhancement of ultrasonic defect signals for crack sizing[J]. NDT & E International, 2012, 52(11): 37-50.
    [18]
    FELICE M, VELICHKO A, WILCOX P. Accurate depth mea-surement of small surface-breaking cracks using an ultrasonic array post-processing technique[J]. NDT & E International, 2014, 68(12): 105-112.
    [19]
    PENG C, BAI L, ZHANG J, et al. The sizing of small surface-breaking fatigue cracks using ultrasonic arrays[J]. NDT & E International, 2018, 99(10): 64-71.
    [20]
    SATYARNARAYAN L, PUKAZHENDHI D, BALASUBRAMANIAM K, et al. Phased array ultrasonic measurement of fatigue crack growth profiles in stainless steel pipes[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2007, 129(4): 737-743. doi: 10.1115/1.2767367
    [21]
    周正干, 彭地, 李洋, 等. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510001.htm

    ZHOU Z G, PENG D, LI Y, et al. Full focus imaging algorithm and its calibration in phased array ultrasonic testing technology[J]. Chinese Journal of Mechanical Engineering, 2015, 51(10): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510001.htm
    [22]
    FAN C, CALEAP M, PAN M, et al. A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation[J]. Ultrasonics, 2014, 54(7): 1842-1850. doi: 10.1016/j.ultras.2013.12.012
    [23]
    ASTM. Stardard test method for measurement of frature toughness: ASTM E 1820—2020[S]. Conshohocken: ASTM, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(210) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return