Volume 49 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0170
Citation: ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0170

High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites

doi: 10.13700/j.bh.1001-5965.2021.0170
Funds:  National Natural Science Foundation of China (11802296); Equipment Pre Research Fund (61402060301)
More Information
  • Corresponding author: E-mail:zhjbuaa@126.com
  • Received Date: 06 Apr 2021
  • Accepted Date: 11 Jun 2021
  • Available Online: 16 Jan 2023
  • Publish Date: 06 Jul 2021
  • The inorganic-organic hybrid phenolic composite (IPC) tends to be widely used for the thermal protection of near-space hypersonic vehicles. The thermal conductivity estimation of IPCs plays an important role in the fine design of thermal protection system. A thermal conductivity identification method considering ablation effect is proposed and verified based on the benchmark of Ablation Workshop. The results show the computation precision of the proposed method. Through the arc wind tunnel test of IPCs with stratified temperature and ablation sensors, the temperature and pyrolysis thickness distribution data of IPCs with different thicknesses are obtained, and the relationship between the thermal conductivity and temperature of IPCs is achieved. Before 800 K, the thermal conductivity of the original layer of the IPC increases slowly with temperature, remaining below 0.1 W/(m·K). After 800 K, however, changes occur abruptly, and the thermal conductivity of the carbonization layer increases sharply with the increase of temperature, reaching 0.17 W/(m·K) at 1300 K.

     

  • loading
  • [1]
    程海明, 薛华飞, 洪长青, 等. 一种新型低密度低热导率碳/酚醛复合材料的制备与隔热性能研究[J]. 稀有金属材料与工程, 2015, 44(1): 478-481.

    CHENG H M, XUE H F, HONG C Q, et al. Fabrication and heat-insolation of a novel low-density and low thermal conductivity carbon/phenolic composite[J]. Rare Metal Materials and Engineering, 2015, 44(1): 478-481(in Chinese).
    [2]
    王晓鹏, 罗振华, 张勃兴, 等. 轻质隔热纳米孔结构耐烧蚀酚醛材料[J]. 宇航材料工艺, 2014, 1: 84-88.

    WANG X P, LUO Z H, ZHANG B X, et al. Preparation and properties of ablation-resistant phenolic resin with low density, heat insulation and nanopores[J]. Aerospace Materials & Technology, 2014, 1: 84-88(in Chinese).
    [3]
    张幸红, 韩杰才, 董世运, 等. 梯度功能材料制备技术及其发展趋势[J]. 宇航材料工艺, 1999, 2: 1-5. doi: 10.3969/j.issn.1007-2330.1999.01.001

    ZHANG X H, HAN J C, DONG S Y, et al. Preparing techniques and developing tendency of functionally gradient materials[J]. Aerospace Materials & Technology, 1999, 2: 1-5(in Chinese). doi: 10.3969/j.issn.1007-2330.1999.01.001
    [4]
    贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA X F, LIU X H, QIAO W M, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1): 77-80(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [5]
    贾献峰, 王际童, 龙东辉, 等. PICA-X 的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6): 46-49.

    JIA X F, WANG J T, LONG D H, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology, 2016, 46(6): 46-49(in Chinese).
    [6]
    董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11): 4896-4901.

    DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal, 2018, 69(11): 4896-4901(in Chinese).
    [7]
    陈昭栋, 陈丕, 陈芬, 等. 热针法瞬态测量热物性研究[J]. 中国测试, 2015, 41(1): 66-70. doi: 10.11857/j.issn.1674-5124.2015.01.017

    CHEN Z D, CHEN P, CHEN F, et al. Transient measurement of thermal physics properties by hot needles method[J]. China Measurement & Test, 2015, 41(1): 66-70(in Chinese). doi: 10.11857/j.issn.1674-5124.2015.01.017
    [8]
    程文龙, 张宏泽, 赵锐. 基于蒙特卡罗反演的热探针导热系数测量方法[J]. 中国科学技术大学学报, 2008, 34(8): 414-418.

    CHENG W L, ZHANG H Z, ZHAO R, et al. A new method of thermal probe for thermal conductivities measurement based on Monte Carlo inversion[J]. Journal of University of Science and Technology of China, 2008, 34(8): 414-418(in Chinese).
    [9]
    程文龙, 马然, 宋嘉梁. 基于随机近似热探针方法的土壤热物性高精度测量系统[J]. 流体机械, 2013, 41(8): 63-66. doi: 10.3969/j.issn.1005-0329.2013.08.014

    CHENG W L, MA R, SONG J L, et al. Measurement apparatus of soil thermal properties by stochastic approximation thermal probe method with high accuracy[J]. Fluid Machinery, 2013, 41(8): 63-66(in Chinese). doi: 10.3969/j.issn.1005-0329.2013.08.014
    [10]
    胡芃, 陈则韶. 量热技术和热物性测定[M]. 合肥: 中国科学技术大学出版社, 2009: 79-84.

    HU P, CHEN Z S. Calorimetry and thermophysical property determination[M]. Hefei: China University of science and Technology Press, 2009: 79-84 (in Chinese).
    [11]
    HUANG C H, YAN J Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity[J]. International Journal of Heat Mass Transfer, 1995, 38(18): 3433-3441. doi: 10.1016/0017-9310(95)00059-I
    [12]
    BECK J V, MCMASTERS R L. Solutions for multidimensional transient heat conduction with solid body motion[J]. International Journal of Heat and Mass Transfer, 2004, 47: 3757-3768. doi: 10.1016/j.ijheatmasstransfer.2004.03.012
    [13]
    ALIFANOV O M, NENAROKOMOV A V, BUDNIK S A, et al. Identification of thermal properties of materials with applications for spacecraft structures[J]. Inverse Problems in Science and Engineering, 2004, 12(5): 579-594. doi: 10.1080/1068276042000219958
    [14]
    唐中华, 钱炜祺, 刘永利. 基于伴随方程法的材料热传导系数反演方法[J]. 计算物理, 2010, 27(4): 561-566. doi: 10.3969/j.issn.1001-246X.2010.04.011

    TANG Z H, QIAN W Q, LIU Y L. Thermal conductivity inversion with adjoint equation method[J]. Chinese Journal of Computational Physics, 2010, 27(4): 561-566(in Chinese). doi: 10.3969/j.issn.1001-246X.2010.04.011
    [15]
    周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014, 35(12): 1341-1351. doi: 10.3879/j.issn.1000-0887.2014.12.006

    ZHOU H L, XU X S, LI X L, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351(in Chinese). doi: 10.3879/j.issn.1000-0887.2014.12.006
    [16]
    HOSEIN M, IRAJ P, ALI H. Inverse identification of thermal properties of charring ablators[J]. Numerical Heat Transfer, 2009, 56: 478-501. doi: 10.1080/10407780903266489
    [17]
    CHEN Y K, MILOS F S. Ablation and thermal response program for spacecraft heat shield analysis[J]. Journal of Spacecraft and Rockets, 2015, 36(3): 475-483.
    [18]
    ZIEN T F, WEI C Y. Heat transfer in the melt layer of a simple ablation model[J]. Journal of thermophysics and Heat Transfer, 1999, 13(4): 450-459. doi: 10.2514/2.6483
    [19]
    MAHZARI M, BRAUN R D. Time-dependent estimation of Mars Science Laboratory surface heating from simulated MEDLI data[C]//43rd AIAA Thermophysics Conference. Reston: AIAA, 2012: 2871.
    [20]
    KANEVCE L P, KANEVCE G H, ANGELEVSKI Z Z. Comparison of two kinds of experiments for estimation of thermal properties of ablative composite[C]//Conference on Inverse Problems in Engineering, 1999: 1-7.
    [21]
    OLIVEIRA A P D, ORLANDE H R B. Estimation of the heat flux at the surface of ablating materials by using temperature and surface position measurements[J]. Inverse Problems in Science and Engineering, 2004, 12(5): 563-577. doi: 10.1080/1068276042000219949
    [22]
    HAKKAKI-FARD A, KOWSARY F. Heat flux estimation in a charring ablator[J]. Numerical Heat Transfer, Part A, 2008, 53: 543-560.
    [23]
    钱炜祺, 周宇, 何开锋, 等. 考虑烧蚀情况下的表面热流辨识[J]. 空气动力学学报, 2014, 32(6): 772-776.

    QIAN W Q, ZHOU Y, HE K F, et al. Heat flux estimation for heat transfer problem with ablation[J]. Acta Aerodynamica Sinica, 2014, 32(6): 772-776(in Chinese).
    [24]
    AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton’s method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1): 71-82. doi: 10.2514/1.29610
    [25]
    LACHAUD J, MARTIN A, COZMUTA I, et al. Ablation workshop test case[EB/OL]. (2011-03-03)[2021-04-06]. http://ablation 2012. engineering. uky.edu/files/2012/02/Test_Case_1. pdf.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(275) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return