Volume 49 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG H,YU Y Z,QIU X T. ORB-SLAM2 algorithm based on improved key frame selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):45-52 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0173
Citation: ZHANG H,YU Y Z,QIU X T. ORB-SLAM2 algorithm based on improved key frame selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):45-52 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0173

ORB-SLAM2 algorithm based on improved key frame selection

doi: 10.13700/j.bh.1001-5965.2021.0173
More Information
  • Corresponding author: E-mail:zhanghong@jiangnan.edu.cn
  • Received Date: 06 Apr 2021
  • Accepted Date: 14 May 2021
  • Available Online: 16 Jan 2023
  • Publish Date: 26 May 2021
  • To address the difficulties caused by the low accuracy and poor robustness of simultaneous localization and mapping (SLAM), an ORB-SLAM2 algorithm is proposed based on key frame selection. First, the relative pose between frames is calculated based on ORB-SLAM2. Second, to determine whether a new key frame should be created, rotation and translation values are added to the original algorithm, functioning as the judgement basis. Then, an inferior key frame removal algorithm is designed to solve the problem of inferior key frame generation which results from incorrect shooting caused by the relative movement between the robot and the camera installed in the self-developed mobile robot. Finally, experiments are carried out based on the RGB-D dataset and the developed mobile robot, verifying the outstanding performance of the proposed algorithm. The results show that the improved key frame selection algorithm can accurately and timely choose the key frame, and reduce tracking failures. In the most optimal case, the positioning error is about 51.9% of that of the original, while the linear error is about 82.1% of that of the original, which effectively eliminates the influence caused by relative motion between the camera and the robot. This research shows that the improved algorithm could effectively promote positioning accuracy and reduce tracking failures.

     

  • loading
  • [1]
    JIANG W, YE G C, ZHOU D H. Dynamic model based energy consumption optimal motion planning for high-voltage transmission line mobile robot manipulator[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2021, 253(1): 93-105.
    [2]
    罗欣, 丁晓军. 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报, 2021, 53(1): 1-15. doi: 10.11918/201910067

    LUO X, DING X J. Research and prospective on motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 1-15(in Chinese). doi: 10.11918/201910067
    [3]
    魏彤, 龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报, 2020, 46(4): 703-711.

    WEI T, LONG C. Path planning for mobile robot based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 703-711(in Chinese).
    [4]
    翟敬梅, 刘坤, 徐晓. 室内移动机器人自主导航系统设计与方法[J]. 计算机集成制造系统, 2020, 26(4): 890-899.

    ZHAI J M, LIU K, XU X. Autonomous indoor navigation system of mobile robot[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 890-899(in Chinese).
    [5]
    FUNENTES P, RUIZ A, RENDON M. Visual simultaneous localization and mapping: A survey[J]. Artificial Intelligence Review, 2012, 43(1): 55-81.
    [6]
    LI J Q, PEI L, ZHOU D P, et al. Attention-SLAM: A visual monocular SLAM learning from human gaze[J]. IEEE Sensors Journal, 2021, 21(5): 6408-6420. doi: 10.1109/JSEN.2020.3038432
    [7]
    王晨捷, 罗斌, 李成源, 等. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776.

    WANG C J, LUO B, LI C Y, et al. UAV visual SLAM collaborative mapping and navigation[J]. Acta Geodaetica et Crtographica Sinica, 2020, 49(6): 767-776(in Chinese).
    [8]
    GARCIA-FIDALGO E, ORTIZ A. Vision-based topological mapping and localization methods: A survey[J]. Robotics and Autonomous Systems, 2015, 64: 1-20. doi: 10.1016/j.robot.2014.11.009
    [9]
    TANG Y C, WANG C, LUO L, et al. Recognition and localization methods for vision-based fruit picking robots: A review[J]. Frontiers in Plant Science, 2020, 11: 510-526. doi: 10.3389/fpls.2020.00510
    [10]
    ENGEL J, SCHOPS T, CREMERS D, et al. LSD-SLAM: Large-scale direct monocular SLAM[C]//European Conference on Computer Vision. Berlin: Springer, 2014, 8690: 834-849.
    [11]
    SAKAI T, YOSHIOKA M, INOUE K. Camera tracking improvement for LSD-SLAM system with 360-degree camera[J]. IEEE Transactions on Electronics, Information and Systems, 2020, 140(7): 800-809. doi: 10.1541/ieejeiss.140.800
    [12]
    ENDRES F, HESS J, STURM J, et al. 3D mapping with an RGB-D camera[J]. IEEE Transactions on Robotics, 2014, 30(1): 177-187.
    [13]
    MUR-ARTAL R, MOTIEL J M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    [14]
    MUR-ARTAL R, MOTIEL J M, TARDOS J D. ORB-SLAM2: An open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi: 10.1109/TRO.2017.2705103
    [15]
    LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB-D: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2684-2701.
    [16]
    张括嘉, 张云洲, 吕光浩, 等. 基于局部语义拓扑图的视觉SLAM闭环检测[J]. 机器人, 2019, 41(5): 649-659.

    ZHANG K J, ZHANG Y Z, LV G H, et al. Loop closure detection based on local semantic topology for visual slam system[J]. Robot, 2019, 41(5): 649-659(in Chinese).
    [17]
    GARDENFORS P. Using event representations to generate robot semantics[J]. ACM Transactions on Human-Robot Interaction (THRI), 2019, 8(4): 1-21.
    [18]
    YANG G, CHEN Z, LI Y, et al. Rapid relocation method for mobile robot based on improved ORB-SLAM2 algorithm[J]. Remote Sensing, 2019, 11(2): 149. doi: 10.3390/rs11020149
    [19]
    XIE P, SU W, LI B, et al. Modified keyframe selection algorithm and map visualization based on ORB-SLAM2[C]//2020 4th International Conference on Robotics and Automation Sciences (ICRAS). Piscataway: IEEE Press, 2020: 142-147.
    [20]
    CUI L, MA C, WEN F. Direct-ORB-SLAM: Direct monocular ORB-SLAM[J]. Journal of Physics: Conference Series, 2019, 1345(3): 032016. doi: 10.1088/1742-6596/1345/3/032016
    [21]
    POMERLEAU F, COLAS F, SIEGWART R. A review of point cloud registration algorithms for mobile robotics[J]. Foundations and Trends in Robotics, 2015, 4(1): 1-104. doi: 10.1561/2300000035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(777) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return